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Abstract

SSH is a Swiss Army Knife protocol for creating secure communication links between
machines and an indispensable tool for IT professionals. However, its underlying
symmetric encryption scheme constructions have not seen the same rigorous analysis
as constructions in other popular secure communication protocols. This thesis aims
to bridge this gap, providing SSH deployment statistics, new attacks against a
number of SSH encryption schemes, a thorough security analysis of several SSH
encryption schemes, and development of new SSH encryption schemes that provide
better security properties than existing schemes.

Firstly, we report on several scans performed targeting publicly accessible SSH servers
on the Internet. From these scans, we compile longitudinal SSH statistics evaluating
the evolution of preferred SSH encryption scheme, SSH software and SSH version
trends.

Secondly, we describe several new attacks on SSH encryption schemes in OpenSSH
that utilise the CBC encryption mode of operation. These attacks are a result of
both inherent weaknesses in CBC-mode and bugs in the OpenSSH implementation.

Thirdly, we use the ciphertext fragmentation framework to analyse the concrete
cryptographic security of a number of SSH encryption schemes as implemented in
OpenSSH.

Finally, we develop a practical version of the symmetric encryption scheme InterMAC,
implement it and evaluate its security and performance. The implementation is
then used to construct InterMAC-based SSH encryption schemes. We evaluate
the performance of these new schemes against existing SSH encryption schemes in
OpenSSH.
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Chapter 1

Introduction

This chapter gives an overview of the thesis. We provide the motivation for our

research and describe the contributions of this thesis. In this chapter, we also present

the overall structure of the thesis.

1.1 Motivation

Authenticated Encryption (AE) security has emerged as the standard security notion

that a symmetric encryption scheme should satisfy to be considered for practical use.

AE security is equivalent to achieving IND-CPA and INT-CTXT security, meaning

confidentiality against a passive attacker and integrity against an active attacker

armed with a decryption capability. However, AE security is not sufficient for every

application scenario. A case in point is SSH,1 specifically the Binary Packet Protocol,

the component of the SSH protocol suite specifying data transfer. SSH continues

to be an indispensable tool for system administrators. Originally designed as a

secure replacement for unencrypted protocols such as Telnet and rsh, it has since

established itself as the primary protocol for remote login to UNIX environments and

has been extended to cover bulk file transfers and other applications. Its importance is

underlined by Microsoft making OpenSSH, a popular SSH implementation, available

on its Microsoft Windows 10 operating system.2

In 2002 Bellare et al. [20] proved that the variant of “Encrypt & Mac” used in

SSH provides (stateful) AE security under reasonable assumptions on the protocol’s

building blocks. However, in 2009 Albrecht et al. [5] presented a plaintext-recovery

attack against SSH encryption schemes using CBC-mode with random IVs in SSH,

1The current version of the protocol is version two and is denoted SSHv2, but we will write SSH
as a shorthand.

2https://www.zdnet.com/article/openssh-arrives-in-windows-10-spring-
update (accessed 12/02/2020).
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a case covered by the proof. The attack exploits the fact that ciphertexts can be

delivered as a sequence of fragments, with the attacker being able to observe the

behaviour of the receiver as each fragment is delivered. The attack also exploits

the fact that SSH tries to hide information about packet lengths by encrypting the

relevant length field. Traditional security notions, including those used by Bellare et

al. [20], do not cater for this kind of ciphertext fragmentation attack. Fragmentation

of ciphertexts has also been used to mount attacks against IPSec [55].

The attack in [5] motivated significant follow-up work in two distinct yet closely cou-

pled directions — theoretical modelling and the widespread deployment of improved

encryption schemes in SSH.

In the first direction, Paterson and Watson [114] analysed SSH’s use of CTR-mode,

showing that it achieves security in a prototypical model supporting ciphertext

fragmentation. The paper [114] inspired the more general and mature treatment of

symmetric encryption supporting fragmented decryption by Boldyreva et al. [36]. That

paper introduced general notions formalising confidentiality against fragmentation

attacks (IND-sfCFA). It also showed that more advanced security notions considered

desirable by the designers of SSH, namely boundary hiding security (BH-CPA and

BH-sfCFA) and resistance to certain types of denial-of-service attack (DOS-sfCFA),

could be achieved at the same time as confidentiality at low cost using only standard

tools. In this thesis, we expand the set of notions to an integrity notion (INT-sfCTF)

that can also be realised in combination with the rest of the ciphertext fragmentation

notions, in the same way.

In the second direction, deployment of improved SSH encryption schemes, we have

seen a proliferation of alternative choices of encryption schemes being introduced

to SSH. First, the OpenSSH implementation of CBC-mode was quickly patched to

prevent the specific attack in [5]. Then many implementations (including OpenSSH

and the lightweight SSH implementation Dropbear, popular on embedded devices)

moved to make CTR-mode the default choice, a selection well-supported by the anal-

ysis in [114]. More recently, SSH-AES-GCM, generic Encrypt-then-MAC constructions

and SSH-ChaCha20-Poly1305 have been added to OpenSSH. However, except for

CTR-mode, these new modes have not yet been subjected to any serious scrutiny

by the research community in the SSH context, where, recall, additional attack

capabilities beyond those usually assumed in the symmetric encryption setting must

be taken into account.
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Given the serious nature of the attacks in [5], and the sensitive, high-value nature of

at least some traffic protected by SSH, we assert that it is an important problem

to study whether the newly introduced SSH encryption schemes do lead to a secure

channel in SSH. This is also a particularly timely problem to address, in view of

SSH-ChaCha20-Poly1305, one of the new schemes, having been promoted to default

algorithms in OpenSSH 6.9 in mid-2015, and is now a particular popular choice.

In this thesis, we address this problem and bring the two directions described above

— theoretical modelling and deployment of improved choices of encryption schemes—

together. We present a systematic analysis of popular symmetric encryption schemes

for SSH and deployment statistics for both SSH encryptions schemes and SSH

software products. In addition, we also show that our systematic analysis is timely

by presenting several new attacks against the CBC-mode encryption schemes in

OpenSSH.

However, as our results show, it is notable that none of the symmetric encryption

schemes currently supported in SSH (nor in the leading OpenSSH implementa-

tion) achieve the four strongest properties in combination (IND-sfCFA, INT-sfCTF,

BH-sfCFA, DOS-sfCFA). For example, the now-default SSH encryption scheme in

OpenSSH SSH-ChaCha20-Poly1305, is based on ChaCha20-Poly1305, but uses two sep-

arate keys, one for encrypting the length field, and another for encrypting actual data.

The length field encryption highlights the OpenSSH developers’ desire to achieve

some form of boundary hiding, a desire explicitly confirmed by one of the main

OpenSSH developers, Damien Miller [110]. The SSH-ChaCha20-Poly1305 scheme still

suffers from weaknesses that lead to easy attacks: an attacker can manipulate the

length field, enabling a DOS-sfCFA attack; meanwhile BH-sfCFA attacks are possible

by “bit-flipping” elsewhere in the packet and observing how many bytes of input are

needed to trigger MAC errors. The scheme does at least achieve BH-CPA security.

The above discussion begs the question: can one do better, achieving all four of the

strong security notions formalised by Boldyreva et al. [36], and at what cost? In

fact, [36] already defined a scheme, InterMAC, that meets the four security notions:

IND-sfCFA, INT-sfCTF, BH-sfCFA, and DOS-sfCFA. Their scheme breaks a message

into equal-sized chunks and applies an Encrypt-then-MAC construction to them

separately, incorporating certain encoding information in the MAC computation to

indicate the final chunk of a message and to ensure that chunks cannot be reordered

or deleted. The size of each chunk in bytes, called the chunk length, is a parameter
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of the scheme which we denote by N . It determines the amount of DoS security the

InterMAC scheme offers: it is guaranteed that decryption must output either some

plaintext or an error message for every N + δ bytes of ciphertext received, where δ is

some small overhead (related to the scheme’s ciphertext expansion).

Reflecting on the discussion above, it is evident that there is a need, beyond analysing

existing SSH encryption schemes, to implement and deploy schemes that satisfy the

advanced security notions desired (but not currently met) by the designers of the

SSH protocol. To rectify this situation, this thesis develops a practical version of

InterMAC and uses this version to implement new InterMAC-based SSH encryption

schemes for OpenSSH.

1.2 Vulnerability Disclosure

We disclosed our new attacks to the OpenSSH team in two different disclosures.

We first notified the OpenSSH team of our second new attack on CBC-mode on

5/5/2016. Our first and third new attacks on CBC-mode were notified to the

OpenSSH team on 15/12/2016. The first attack was applicable to OpenSSH version

5.2 - 7.4 and was addressed in OpenSSH version 7.5, released 20/3/2017.3 The second

attack was applicable to OpenSSH versions 5.2 - 7.2 and addressed in OpenSSH

version 7.3, released 1/8/2016.4 The third attack has been applicable since OpenSSH

version 7.3. We also notified the OpenSSH team of a flaw in MAC processing in the

SSH-Generic-EtM scheme on 22/5/2016. This issue was also addressed in OpenSSH

version 7.3.

1.3 Organisation of Thesis

The remainder of this thesis is organised as follows.

Chapter 2. In this chapter, we give an overview of modern cryptography, introducing

key concepts and definitions used throughout. We also give an introduction to the

parts of the SSH protocol that will become relevant in later chapters.

Chapter 3. This chapter introduces the ciphertext fragmentation model, covering

3See http://www.openssh.com/txt/release-7.5.
4See http://www.openssh.com/txt/release-7.3.
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notation and definitions. We analyse the model and surface a number of critical

points. Furthermore, we fix a flaw in the original confidentiality definition from [36].

At the end of the chapter, we compare the ciphertext fragmentation model to similar

security models in the literature.

Chapter 4. In this chapter, we present statistics on the SSH ecosystem on the

Internet collected through three scans performed in 2015, 2016 and 2019. In our

presentation, we focus on the different SSH implementations and versions, as well

as the SSH encryption schemes preferred by SSH servers. In addition, we analyse

several SSH software identifiers returned by SSH servers, attempting to identify the

underlying software.

Chapter 5. This chapter describes three new attacks against SSH encryption

schemes in OpenSSH that use CBC-mode. We describe in detail how each attack is

performed, how each attack could potentially be mitigated, and the practical impact

of the attacks. Furthermore, we explain how an old attack by Albrecht, Paterson

and Watson [5] can be applied to Dropbear.

Chapter 6. In this chapter, we provide a formal treatment of several SSH encryption

schemes, as implemented in OpenSSH, in the ciphertext fragmentation model. We

show that many schemes meet confidentiality and integrity notions, but most schemes

fail to meet the more advanced notions of boundary hiding and denial-of-service

resistance.

Chapter 7. This chapter introduces an implementation of the InterMAC scheme.

The scheme is first modified with an aim towards making it usable in practice. We

then present libInterMAC, a library that implements the InterMAC scheme. We

describe several implementation techniques used to mitigate potential side-channel

attack vectors. We use libInterMAC to implement InterMAC-based SSH encryption

schemes in OpenSSH. Finally, we provide a thorough performance analysis of both

libInterMAC and the InterMAC-based SSH encryption schemes, and compare them

against existing SSH schemes in OpenSSH.

1.4 Associated Publications

Chapters 3, 4, 5 and 6 are based on joint work with Martin R. Albrecht, Jean Paul

Degabriele and Kenneth G. Paterson [A], as well as unpublished work developed
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jointly with the same authors. Chapter 7 is based on joint work with Martin R.

Albrecht and Kenneth G. Paterson [B]. All authors contributed equally to the above

publications.

[A] Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt Hansen, and Kenneth

G. Paterson. A surfeit of SSH cipher suites. In Edgar R. Weippl, Stefan

Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,

ACM CCS 2016: 23rd Conference on Computer and Communications Security,

pages 1480-1491. ACM Press, October 2016.

[B] Martin R. Albrecht, Torben Brandt Hansen, and Kenneth G. Paterson. libInter-

MAC: Beyond confidentiality and integrity in practice. IACR Transactions on

Symmetric Cryptology, 2019(1):46-83, 2019.
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Chapter 2

Background

This chapter covers background material, highlights key assumptions and fixes nota-

tion.

2.1 Notation

We let Func(X ,Y) denote the set of functions from set X to set Y. For algorithms

A1,A2, . . ., we let AA1,A2,... denote the output after executing A with oracle access to

A1,A2, . . . and with fresh coins. We use {0, 1}∗/B∗ to denote the set of all bit/byte

strings of finite length and {0, 1}n/Bn to denote the set of all bit/byte strings of

length n. If S is a set, then S+ denotes the set of all combinations of concatenations

of elements from S and s←$S means sampling an element s uniformly at random

from S. If i is an unsigned integer, 〈i〉` denotes the unsigned `-bit representation

of i (truncating the most significant bits if the bit length of i is larger than `).

Accordingly, 〈·〉−1 represents the inverse mapping which maps strings of any length

to N. ε denotes the empty string.

We view a string v in two ways: either as a string consisting of bits or as a string

consisting of bytes. In the former case, we call v a bit-string, while in the latter case,

we call v a byte-string. This defines two type of strings, and we refer to this as v’s

string type. A string can only be a byte-string if its length, counted in bits, is a

multiple of 8. A byte-string is also a bit-string, while a bit-string is not necessarily

a byte-string. The specific byte-notation, indicated by the subscript B, presented

below can only be used for byte-strings. All bit-wise operations defined below can

also be performed on byte-strings by viewing the byte-string as a bit-string. For two

strings v and w, with the same string type, we use the following notation:

- v ‖ w denotes the concatenation of strings v and w.
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- |v| denotes the size of string v counted in bits.

- |v|B denotes the size of string v counted in bytes.

- v | w denotes the bit-wise logical OR operation between v and w (of the same

length).

- v ⊕ w denotes the bit-wise logical XOR operation between v and w (of the

same length).

- v & w denotes the bit-wise logical AND operation between v and w (of the

same length).

- ∼v denotes the bit-wise logical negation of v.

- v � l denotes the right-shift of v by l bits.

- v � w denotes the prefix predicate and returns true if and only if there exists

u ∈ {0, 1}∗ such that w = v ‖ u, where u must have the same string type as v

and w.

- v%w denotes the (unique) string z such that v = p ‖ z, where p ∈ {0, 1}∗ is

the greatest common prefix of v and w (i.e. p is the longest string such that

p � v and p � w), where p and z must have the same string type as v and w.

- v[i] denotes the ith bit of v. Indexing starts at 0 and no index below 0 is

allowed.

- v[i]B denotes the ith byte of v. Indexing starts at 0 and no index below 0 is

allowed.

- v[i : j] denotes the substring from bit i to bit j (inclusive) of v.

- v[i : j]B denotes the substring from byte i to byte j (inclusive) of v.

For a list L, we use the following notation:

- L = [] denotes the initialisation of L to the empty list.

- L.append(L) denotes appending the element L to the list L.

- L ∈ L denotes the list membership test and returns true if L is an element in

the list L and false otherwise.

- L[i] denotes the ith element of L. Indexing start at 0 and no index below 0 is

allowed.

- L[p . . . q] denotes the sublist [L[p],L[p+ 1], . . . ,L[q]]. If q < p the result is the

empty list [].

20



2.2 Bits vs Bytes

- |L| denotes the number of elements in the list L. The number of elements in

the empty list is 0.

- If the elements of L are (all) strings, where all strings must be of the same

string type, then ||(L) denotes the concatenation L[0] ‖ L[1] ‖ · · · ‖ L[|L| − 1].

For the empty list, we use the convention ||([]) = ε.

- If S is a finite set, then [S]n and [S]∗ denotes the set of all lists of length n

with elements from S and the set of all (finite) lists with elements from S,

respectively.

We use Pr[x← P : φ(x)] to denote the probability that after having executed process

P (which might be running a probabilistic algorithm or drawing elements from certain

distributions (or both)) returning output x, the predicate φ(x) is true. φ is allowed

to execute probabilistic algorithms. The output x will often be suppressed in the

presentation. Security definitions use notation from the code-based game-playing

framework (cf. [24]) with some minor changes in presentation, e.g. we will never use

explicit finalise procedures.

Given a security game G (cf. Section 2.3.2) and an adversary A, we use G(A) to

mean that A is playing the game G.

2.2 Bits vs Bytes

In this thesis, we take a byte-oriented approach when describing algorithms. That is,

algorithms use byte-wise operations. However, because we want to be compatible

with standard works, we keep standard bit-oriented security definitions.

Our main reason for choosing byte-oriented notation is the strong practical view we

take. Odd bit lengths are a significant headache for implementers1 and seldom used

in network protocols, SSH being a prime example of a byte-oriented protocol. As a

result, describing data strings, etc., in bits (not 8-bit multiples) imposes extra work

and creates confusion, but yields no practical advantages.

There are certainly systems for which operating on bits can be beneficial. For

example, real-time wireless sensor networks for, e.g., fire monitoring [136] or border

surveillance [44]. Such systems usually demand not only high data integrity assurance

1As an example, in the native C-language types are all byte oriented
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but also high timeliness [129]. Due to deployment environments, this has to be met

with strict restrictions on bandwidth and energy consumption, making it necessary

to consider non-byte formats.

All algorithm descriptions in this thesis can be converted to a bit representation,

with relative ease.

2.3 Modern Cryptography

This section introduces some of the theory of modern cryptography. The purpose

of this section is to fix notation and definitions used throughout. The treatment is

somewhat cursory, and we will not dive very deep into the fascinating theory of modern

cryptography. For a more thorough treatment of modern cryptography the reader

can consult e.g. [93] (appropriately named Introduction to Modern Cryptography).

2.3.1 Concrete Security

To quantify security of cryptographic schemes, we utilise the concrete security

approach developed by Bellare [14] and Rogaway [121] as part of their push for

practice-oriented provable-security. In this approach the security of a cryptographic

scheme is concretely quantified in terms of its components, and the resources consumed

by an adversary. The goal is to give results that are meaningful in practice. To this

extent, a definition in the concrete security model takes roughly the following form:

A scheme is (η,R)-secure, if for any adversary, with

resources at most R, its success probability is bounded by η (from above).

In this thesis, we use game-based definitions of security. That is, when we state that

a scheme is secure, we mean that the scheme meets a security property encapsulated

through a game played by an adversary. The adversary can “win” the game by

satisfying a particular condition. The success probability is derived through this

game, by computing the probability of an adversary succeeding in satisfying the

condition. We will often refer to the success probability as the adversary’s advantage.

The amount of resources consumed by an adversary is also derived through the game.

Specific resources considered might change depending on the context, but we will
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always consider a subset of the following resources: number of queries the adversary

makes, the total length (in bits or bytes) of its queries (and responses), and the

computation time of the adversary.

Another approach often used when analysing cryptographic schemes is the asymptotic

approach. In this approach, polynomial-time adversaries are considered, and security

is quantified over families of schemes parameterised by a security parameter. Security

of a scheme can be scaled by adjusting the security parameter.

Computational complexity is measured in an underlying model that specifies how to

measure the computational time of an adversary. Such a model will not be defined

here. We assume that adversaries and games terminate in finite time. This, in

turn, implies that both adversaries and games must draw a finite number of random

elements and hence, the underlying sample space is finite.

For more details on the concrete security approach the reader is encouraged to

consult [18, 19, 23].

2.3.2 Proofs and Security Notions

As mentioned earlier, security properties will be captured through games played by an

adversary. We call such a game a security game. An adversary wins a security game

if the win condition is satisfied, the adversary’s advantage is “high”, and there is a

“reasonable” upper bound on the amount of resources consumed. What is considered

a reasonable amount of resources is purposely left undefined because the tolerable

power of an adversary depends on the practical context. For the same reason, what

is considered a high advantage is also left undefined.

To prove a security property, we prove that an adversary can only win the associated

security game (i.e meet the win condition) with “low” advantage when using a

reasonable amount of resources. To show this, we use proofs by reduction. To

illustrate this technique, consider the Discrete Logarithm problem (DL) and the

Decisional Diffie Hellman problem (DDH) [39]. Informally, in the former problem

an adversary should be unable to compute the discrete logarithm while in the latter

problem an adversary should be unable to distinguish between tuples (gx, gy, gz) and

(gx, gy, gxy) (using standard notation). These problems can be viewed as security

games. Given an adversary ADL that solves the DL problem, we can construct a
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“reduction” ADDH that solves the DDH problem. This shows that if we can solve DL,

then we can also solve DDH. In other words, the DL problem is at least as hard as the

DDH problem (i.e. there might be other ways to solve DDH). Note that the “quality”

of the reduction matters. The quality of the reduction is measured by the amount

of resources consumed by the reduction. Going back to our DL/DDH example, if

we constructed ADDH such that it consumes exponentially more resources than ADL,

then the reduction does not necessarily say anything meaningful about ADDH’s ability

to solve the DDH problem in practice, in turn, nor does it say anything meaningful

about the relationship between DDH and DL. This can lead to false conclusions

about practical security levels of cryptographic constructions [42, 108, 43, 95].

A particular type (e.g. a probabilistic encryption scheme, cf. Section 2.3.4) of

cryptographic construction together with an advantage definition and a security

game defines a security notion. The security notion encapsulates the security property,

how it is quantified, the information available to an adversary and what type of

cryptographic construction the notion is valid for. Popular security notions are

IND-CPA and IND-CCA. In Chapter 3, we will define security notions that are

less well known but capture stronger security properties. We will sometimes use

the formulation that a cryptographic construction meets a security notion. This

means that any adversary, using a “reasonable” amount of resources, cannot win

the associated security game, but suppressing the explicit mention of the available

resources and advantage.

All security notions are formulated in a single-user setting. This ignores the fact that

many of today’s systems are distributed and handle multiple users. A multi-user

setting could, for example, be formulated using ideas from [16]. But we will not

explore this further in this thesis.

Recall, that all security definitions below are all bit-oriented, while the algorithm

descriptions, which will appear in later chapters, are byte-oriented.

2.3.3 Pseudorandom Functions

Consider a function F : K ×X → Y , with domain X and codomain Y , where the first

input is called the key and denoted by k. We only consider functions for which K,

X and Y are finite sets. For a specific key k ∈ K, we write Fk(x) = F(k, x) for any

x ∈ X and we say that F is a keyed function. If F is a function that is close to being
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a random function, we call it a pseudorandom function (PRF).

Definition 1 (PRF).

Let F : K ×X → Y be a keyed function. For an adversary A, we define its PRF

advantage (with respect to the keyed function F) as:

AdvPRF
F (A) = Pr

[
k←$K : AFk(·) = 1

]
− Pr

[
f←$ Func(X ,Y) : Af(·) = 1

]
.

The keyed function F is (η,R)-PRF secure, if for any adversary A with resources at

most R, its PRF advantage is bounded by η.

In this game, the adversary is given oracle access to either Fk or f, where k is chosen

uniformly at random from K and f is chosen uniformly at random from Func(X ,Y).

That is, a keyed function F is a PRF if the adversary is unable to distinguish the

output from Fk and a random function f, even knowing input-output pairs.

PRFs were introduced by Goldreich, Goldwasser and Micali [75, 76] and are often

used as building blocks in other cryptographic constructions. For example, symmetric

encryption schemes (see Section 2.3.4) can be constructed from PRFs; PRFs are also

frequently used to model the security of block ciphers [19], although we often want a

stronger primitive, known as a PRP (where the adversary can query both F and its

inverse F−1), for this task (see Section 2.3.6).

2.3.4 Probabilistic Symmetric Encryption

In this section, we define the syntax of symmetric encryption schemes and define a set

of security notions that capture security properties such schemes could aim to meet.

Throughout a symmetric encryption scheme will consist of three algorithms: A key

generation algorithm, an encryption algorithm and a decryption algorithm. For now,

we will focus our attention on probabilistic symmetric encryption schemes. These

are schemes in which the encryption algorithm is viewed as a randomised algorithm,

choosing uniformly and independent random coins internally on each invocation. In

Section 2.3.5, we will define symmetric encryption schemes which utilise either an

initialisation vector or a nonce and instead view the encryption algorithm as being

deterministic. We rely on this latter formulation a lot in this thesis.

Throughout this thesis, we will often abbreviate “probabilistic symmetric encryption

scheme” with “symmetric encryption scheme” if the type of symmetric encryption

scheme is clear from the context.
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Syntax

Below we define the syntax of a symmetric encryption scheme. Note that we opted

not to give a syntax that allows for multiple decryption errors. Allowing multiple

decryption errors can have an effect on security [37].

Definition 2 (Probabilistic symmetric encryption scheme).

A (probabilistic) symmetric encryption scheme SE = (Gen,Enc,Dec) with key space

K ⊆ {0, 1}∗, plaintext space M ⊆ {0, 1}∗, ciphertext space C ⊆ {0, 1}∗ and error

symbol ⊥ (⊥/∈M∪ C) is specified by three algorithms:

- A randomised key generation algorithm Gen that outputs a key k ∈ K. We

write k← Gen.

- A randomised encryption algorithm Enc that takes as input a key k ∈ K and a

plaintext m ∈M, and outputs a ciphertext c ∈ C∪{⊥}. We write c← Enck(m).

- A deterministic decryption algorithm Dec that takes as input a key k ∈ K
and a ciphertext c ∈ C, and outputs a plaintext m ∈ M ∪ {⊥}. We write

m← Deck(c).

We will sometimes omit the explicit mention of the plaintext spaceM and ciphertext

space C if they are not relevant. Both the encryption algorithm and the decryption

algorithm are required to be stateless, and the encryption algorithm can also output

errors. The latter is often omitted, but we feel that it best simulates practice, since

encryption algorithms might fail for some reason (for example, if the encryption

algorithm is fed a message not from M).

Furthermore, we require thatM contains at last two strings and that ifM contains a

string of length l, it contains all strings of length l. Finally, all symmetric encryption

schemes are assumed to be length-regular. That is, if c← Enck(m) and c 6= ⊥, then

the length of c only depends on the length of m. This implies that all plaintext

strings of length l map to ciphertexts of equal length.

It will become useful later to define a bit more notation such that we can more easily

work on lists. For a list Lm = [m1,m2, . . . ,ml] ∈ [M]l, we write Lc ← Enck(Lm)

where Lc = [c1, c2, . . . , cl] and c1 ← Enck(m1), c2 ← Enck(m2), . . . , cl ← Enck(ml).

For a list Lc = [c1, c2, . . . , cl] ∈ [{0, 1}∗]l, we likewise write Lm ← Deck(Lc) where

Lm = [m1,m2, . . . ,ml] and m1 ← Deck(c1), m2 ← Deck(c2), . . . , ml ← Deck(cl).
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An important note about Definition 2 is the underlying assumption of atomic delivery

of ciphertexts. This means that the decryption algorithm must operate on the entire

ciphertext and cannot operate on parts of a ciphertext. In Chapter 3, we will discuss

atomic delivery in detail.

Correctness

We require a symmetric encryption scheme to be perfectly correct: for all keys k ∈ K,

that have a non-zero probability of being output by Gen and all m ∈M the following

is true with probability one:

if c← Enck(m) and c 6= ⊥, then m← Deck(c).

We implicitly assume that the correctness property is satisfied by all symmetric

encryption schemes used in this thesis.

Confidentiality

Confidentiality, or privacy, of plaintexts, is the fundamental guarantee a symmetric en-

cryption scheme aims to provide. We present three standard notions of confidentiality

for symmetric encryption schemes. The first notion is IND-CPA (Indistinguishability

under Chosen-Plaintext Attacks), that gives an adversary the opportunity to query

plaintexts for encryption and receive back the corresponding ciphertexts. We say

that the adversary has oracle access to the encryption algorithm. This notion first

appeared in [17] (inspired by the public key equivalent notion [79]).

We present IND-CPA in terms of left-or-right indistinguishability. In this game, an

adversary is given access to a left-or-right encryption oracle that encrypts one of

two messages depending on a (uniformly random chosen) bit. To win the game, the

adversary must return the bit b.

Definition 3 (IND-CPA).

Let SE = (Gen,Enc,Dec) be a symmetric encryption scheme. Let LR, initialised by

INI, be the algorithms defined in Figure 2.1. For any adversary A, we define its

IND-CPA advantage as:

Advind-cpa
SE (A) = 2 · Pr

[
INI : ALR(·,·) = b

]
− 1.
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alg. INI

b←$ {0, 1}
k← Gen

return

alg. LR(M0,M1)

if |M0| 6= |M1|
return ⊥

C ← Enck(Mb)

return C

Figure 2.1: Algorithms for defining IND-CPA.

The scheme SE is (η,R)-IND-CPA secure, if for any adversary A with resources at

most R, its IND-CPA advantage is bounded by η.

When examining the IND-CPA definition, it is not immediately obvious that it is

a good definition, capturing any form of confidentiality. However, the notion can

be shown to be equivalent to the notion of semantic security [80], which defines

confidentiality in an intuitive way. We prefer the former notion because it is more

user-friendly in proofs and easier to understand conceptually.

It is evident from the IND-CPA definition that a necessary condition on the symmetric

encryption scheme is that the encryption algorithm must be randomised. This

condition is required to avoid leakage when encryptions of the same plaintext are

performed. In practice, deterministic encryption schemes are widely used, but

with some additional external input that ensure randomisation of each encryption.

Upcoming sections explore such constructions further.

An obvious way to strengthen IND-CPA further is to also give the adversary access

to the decryption algorithm. The standard notion capturing this is named IND-CCA

(Indistinguishability under Chosen-Ciphertext Attacks). In this notion, an adversary

can, apart from being able to query plaintexts and receive back the corresponding

ciphertexts, also query ciphertexts and receive back corresponding plaintexts. We

say that the adversary has oracle access to both the encryption and decryption

algorithms.

Definition 4 (IND-CCA).

Let SE = (Gen,Enc,Dec) be a symmetric encryption scheme. Let LR and DEC, both

initialised by INI, be the algorithms defined in Figure 2.2. For any adversary A, we

defines its IND-CCA advantage as:

Advind-cca
SE (A) = 2 · Pr

[
INI : ALR(·,·),DEC(·) = b

]
− 1.

28



2.3 Modern Cryptography

alg. INI

b←$ {0, 1}
k← Gen

LC = []

return

alg. LR(M0,M1)

if |M0| 6= |M1|
return ⊥

C ← Enck(Mb)

LC.append(C)

return C

alg. DEC(C)

M ← Deck(C)

if C ∈ LC

M ←⊥
return M

Figure 2.2: Algorithms for defining IND-CCA.

The scheme SE is (η,R)-IND-CCA secure, if for any adversary A with resources at

most R, its IND-CCA advantage is bounded by η.

Note that the decryption oracle does not allow an adversary to query a ciphertext

that was returned by the encryption oracle. If this would be allowed, the adversary

could trivially win the game!

Random Bit Indistinguishability

There is a stronger notion of left-or-right indistinguishability known as indistinguisha-

bility from random bits. We present a CPA-style notion denoted by IND$-CPA. In

this notion, an adversary is tasked with distinguishing between real ciphertexts and

strings of random bits, under the requirement that the random string of bits has the

same length as the corresponding ciphertext. This notion first appeared in [123].

Definition 5 (IND$-CPA).

Let SE = (Gen,Enc,Dec) be a symmetric encryption scheme. Let ENC and $, both

initialised by INI, be the algorithms defined in Figure 2.3. For any adversary A, we

define its IND$-CPA advantage as:

Advind$-cpa
SE (A) = Pr

[
INI : AENC(·) = 1

]
− Pr

[
INI : A$(·) = 1

]
.

The scheme SE is (η,R)-IND$-CPA secure, if for any adversary A with resources at

most R, its IND$-CPA advantage is bounded by η.

Since we assume length-regularity, IND$-CPA implies IND-CPA (using a proof similar

to Theorem 1 in [17]) with a security loss of only a factor of 2. The opposite is not

true: there are schemes that meet IND-CPA but do not meet IND$-CPA.
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alg. INI

b←$ {0, 1}
k← Gen

return

alg. ENC(M)

C ← Enck(M)

return C

alg. $(M)

C ← Enck(M)

if C = ⊥
return ⊥

R←$ {0, 1}|C|

return R

Figure 2.3: Algorithms for defining IND$-CPA.

alg. INI

k← Gen

WIN = false

LM = []

return

alg. ENC(M)

C ← Enck(M)

LM.append(M)

return C

alg. VF(C)

M ← Deck(C)

if M /∈ LM and M 6= ⊥
WIN = true

return M

Figure 2.4: Algorithms for defining INT-PTXT.

Authenticity

A second essential security property that a symmetric encryption scheme should

aim to meet is authenticity of a plaintext. This property can be defined in terms of

integrity of plaintexts as first defined in [22] and denoted by INT-PTXT.

Definition 6 (INT-PTXT).

Let SE = (Gen,Enc,Dec) be a symmetric encryption scheme. Let ENC and VF, both

initialised by INI, be the algorithms defined in Figure 2.4. Let FORGE be the event

that WIN = true after a query to VF. For any adversary A, we define its INT-PTXT

advantage as:

Advint-ptxt
SE (A) = Pr

[
INI, AENC(·),VF(·) : FORGE

]
.

The scheme SE is (η,R)-INT-PTXT secure, if for any adversary A with resources at

most R, its INT-PTXT advantage is bounded by η.

An adversary wins the game by querying a valid ciphertext to the algorithm VF (i.e.

a ciphertext that decrypts to a plaintext that is not the error symbol), and that does

not decrypt to a plaintext that has previously been queried to the algorithm ENC.

A stronger notion, also identified by Bellare and Namprempre [22] is integrity of

ciphertexts, INT-CTXT.
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alg. INI

k← Gen

WIN = false

LC = []

return

alg. ENC(M)

C ← Enck(M)

LC.append(C)

return C

alg. VF(C)

M ← Deck(C)

if C /∈ LC and M 6= ⊥
WIN = true

return M

Figure 2.5: Algorithms for defining INT-CTXT.

Definition 7 (INT-CTXT).

Let SE = (Gen,Enc,Dec) be a symmetric encryption scheme. Let ENC and VF, both

initialised by INI, be the algorithms defined in Figure 2.5. Let FORGE be the event

that WIN = true after a query to VF. For any adversary A, we defines its INT-CTXT

advantage as:

Advint-ctxt
SE (A) = Pr

[
INI, AENC(·),VF(·) : FORGE

]
.

The scheme SE is (η,R)-INT-CTXT secure, if for any adversary A with resources at

most R, its INT-CTXT advantage is bounded by η.

The INT-CTXT notion is very similar to INT-PTXT. However, instead of requiring

that the plaintext, produced by decrypting the queried ciphertext, must not have

been queried to ENC, it is required that the queried ciphertext has not been returned

by ENC and the queried ciphertext should decrypt to some plaintext different from

the error symbol.

While the two notions look similar, INT-CTXT is a strictly stronger notion than

INT-PTXT. This can be seen by observing that if C is a ciphertext queried to VF,

and the resulting plaintext M has not been queried to ENC, then C cannot have

been returned by ENC without violating correctness of the symmetric encryption

scheme. Hence, we can use an adversary for INT-PTXT to construct an adversary for

INT-CTXT. For the strict part, consider an INT-PTXT secure scheme. Modify the

decryption algorithm such that it ignores any excess ciphertext (identifiable in an

appropriate way). Then the modified scheme is still INT-PTXT secure but definitely

not INT-CTXT secure.

We note that the authenticity property is also commonly referred to by the name

integrity. We use both names interchangeably in this thesis.
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Authenticated Encryption

An authenticated encryption scheme aims to met the notions of confidentiality and

authenticity simultaneously and follows the same syntax as defined in Definition 2.

Bellare and Namprempre [22] identified IND-CCA and INT-PTXT as being the suitable

notions for confidentiality and authenticity, respectively. When considering whether a

scheme is an authenticated encryption scheme, Bellare and Namprempre proved a very

useful result (which we will not prove here), given informally below. Note, Theorem 1

is not true in general if we allow the symmetric encryption scheme to have more than

one error type, cf. [37].

Theorem 1 (IND-CPA and INT-CTXT implies IND-CCA).

Let SE be a symmetric encryption scheme. For any IND-CCA adversary Acca there

exist adversaries Acpa and Actxt, consuming “similar” resources to Acca, such that:

Advind-cca
SE (Acca) ≤ 2 · Advint-ctxt

SE (Actxt) + Advind-cpa
SE (Acpa).

Hence, given a symmetric encryption scheme SE, if we can show that SE meets

IND-CPA and INT-CTXT, we have shown that SE meets INT-PTXT and IND-CCA.

Bellare and Namprempre [22] show that the converse of Theorem 1 it not true, by

showing that INT-PTXT is not guaranteed by IND-CCA.

It is possible to capture the desired security properties (our definition below actually

capture the slightly stronger combination of IND$-CPA and INT-CTXT) of an authen-

ticated encryption scheme in an all-in-one notion first proposed by Rogaway [122].

We will denote this notion by AE. In Section 2.3.5, we will explore this type of notion

more when defining IV-based and nonce-based symmetric encryption schemes.

Definition 8 (AE).

Let SE = (Gen,Enc,Dec) be a symmetric encryption scheme. Let ENC, DEC, $ and

Err, all initialised by INI, be the algorithms defined in Fig. 2.6. For any adversary A,

we define its AE advantage as:

AdvAE
nSE(A) = Pr

[
INI : AENC(·),DEC(·) = 1

]
− Pr

[
INI : A$(·),Err(·) = 1

]
.

The scheme SE is (η,R)-AE secure, if for any adversary A with resources at most R,

its AE advantage is bounded by η.

We call a symmetric encryption scheme satisfying Definition 8 an authenticated

symmetric encryption scheme, sometimes omitting the word symmetric.
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alg. INI

k← Gen

LC = []

return

alg. $(M)

C ← Enck(M)

if C = ⊥
return ⊥

R←$ {0, 1}|C|

return R

alg. ENC(M)

C ← Enck(M)

LC.append(C)

return C

alg. Err(C)

return ⊥

alg. DEC(C)

if C ∈ LC

return ⊥
M ← Deck(C)

return M

Figure 2.6: Algorithms for defining AE.

In the AE security game, the adversary is given oracle access to one of two pairs of

algorithms. The first pair of algorithms consists of the encryption and decryption

algorithms. In the second pair of algorithms, one algorithm outputs random strings

(of the same length as the corresponding ciphertexts) while the second algorithm

always outputs the error symbol ⊥. Informally, the definition measures the ability

of an adversary to distinguish an encryption-decryption oracle pair from a pair of

oracles that return random bits and errors.

It is trivial to see that if a symmetric encryption scheme meets AE then it also

meets IND$-CPA, by simply ignoring the DEC and Err oracle access. On the same

lines, consider an adversary that wins the INT-CTXT game. The adversary must

first satisfy the condition that C /∈ LC. Secondly, the adversary must also ensure

that the decryption algorithm does not return an error. But if an adversary can

satisfy these two conditions, the adversary can also win the AE game, because a

distinguisher can distinguish between the output from algorithms DEC and Err.

Together with Theorem 1 this shows that AE also implies IND-CCA.

2.3.5 IV-based and Nonce-based Symmetric Encryption

In the previous section, we defined probabilistic symmetric encryption schemes.

However, in practice, symmetric encryption schemes are often not built using internal

randomness. They instead rely on externally provided values and let the encryption

algorithm be deterministic. For example, widely used symmetric encryption schemes

such as AES-CBC and AES-GCM [107] rely on external values (although, the former
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could be defined as a probabilistic scheme). The former uses a uniformly random

chosen initialisation vector (IV) and the latter utilises a nonce.

Syntax

Below we present definitions for both IV-based and nonce-based symmetric encryp-

tions schemes, with the presentation inspired by Namprempre et al. [112].

Definition 9 (IV-based symmetric encryption scheme).

An IV-based symmetric encryption scheme SE = (Gen,Enc,Dec) with key space

K ⊆ {0, 1}∗, plaintext space M⊆ {0, 1}∗, ciphertext space C ⊆ {0, 1}∗, initialisation

vector space I ⊆ {0, 1}∗ and error symbol ⊥ (⊥/∈ M ∪ C) is specified by three

algorithms:

- A randomised key generation algorithm Gen that outputs a key k ∈ K. We

write k← Gen.

- A deterministic encryption algorithm Enc that takes as input a key k, a plaintext

m ∈M and initialisation vector iv ∈ I, and outputs a ciphertext c ∈ C ∪ {⊥}.
We write c← Enck(m, iv).

- A deterministic decryption algorithm Dec that takes as input a key k, a cipher-

text c ∈ C and initialisation vector iv ∈ I, and outputs a plaintext m ∈M∪{⊥}.
We write m← Deck(c, iv).

The IV iv that is provided as input to the encryption algorithm should be chosen

uniformly at random from the set of all possible IV values I. This will be enforced by

the encryption oracle algorithm in the game defining the desired security properties

of an IV-based symmetric encryption scheme. In addition, the encryption oracle

algorithm will surface the initialisation vector, which reflects the practical requirement

that a receiver of the ciphertext requires the IV for decryption.

Furthermore, we require that M contains at last two strings and that if M contains

a string of length l, it contains all strings of length l. Finally, we assume that all IV-

based symmetric encryption schemes are length-regular. That is, if c← Enck(m, iv)

and c 6= ⊥, then the length of c is a function of m and iv.

For lists Lm = [m1,m2, . . . ,ml] ∈ [M]l and Liv = [iv1, iv2, . . . , ivl] ∈ [I]l, we

write Lc ← Enck(Lm,Liv) where Lc = [c1, c2, . . . , cl] and c1 ← Enck(m1, iv1), c2 ←
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Enck(m2, iv2), . . . , cl ← Enck(ml, ivl). For a list Lc = [c1, c2, . . . , cl] ∈ [{0, 1}∗]l,
we likewise write Lm ← Deck(Lc,Liv) where Lm = [m1,m2, . . . ,ml] and m1 ←
Deck(c1, iv1), m2 ← Deck(c2, iv2), . . . , ml ← Deck(cl, ivl).

Definition 10 (Nonce-based symmetric encryption scheme).

A nonce-based symmetric encryption scheme SE = (Gen,Enc,Dec) with key space

K ⊆ {0, 1}∗, plaintext space M⊆ {0, 1}∗, ciphertext space C ⊆ {0, 1}∗, nonce space

N ⊆ {0, 1}∗, additional data space A ⊆ {0, 1}∗ and error symbol ⊥ (⊥/∈M∪ C) is

specified by three algorithms:

- A randomised key generation algorithm Gen that outputs a key k. We write

k← Gen.

- A deterministic encryption algorithm Enc that takes as input a key k, a plaintext

m ∈M, a nonce n ∈ N and additional data a ∈ A, and outputs a ciphertext

c ∈ C ∪ {⊥}. We write c← Enck(m,n, a).

- A deterministic decryption algorithm Dec that takes as input a key k, a cipher-

text c ∈ C, a nonce n ∈ N and additional data a ∈ A, and outputs a plaintext

m ∈M∪ {⊥}. We write m← Deck(c, n, a).

We will sometimes omit the additional data from the notation when this is not

required. The nonce should be handled with care, because, as it will become apparent

soon, the security of nonce-based schemes relies on the nonce to never repeat during

calls to encryption. Since the nonce is an external input, it is up to the consumer

to honour this requirement. This has created a basis for misuse since encryption is

often used in complex protocols or environments where ensuring non-repetition of

nonces can be challenging to achieve [35, 96, 40, 58, 126, 131].

Furthermore, we require thatM contains at last two strings and that ifM contains a

string of length l, it contains all strings of length l. Finally, all nonce-based symmetric

encryption schemes are assumed to be length-regular. That is, if c← Enck(m,n, a)

and c 6= ⊥, then the length of c is only a function of m, n and a.

For lists Lm = [m1,m2, . . . ,ml] ∈ [M]l, Ln = [n1, n2, . . . , nl] ∈ [N ]l and La =

[a1, a2, . . . , al] ∈ [A]l, we write Lc ← Enck(Lm,Ln,La) where Lc = [c1, c2, . . . , cl]

and c1 ← Enck(m1, n1, a1), c2 ← Enck(m2, n2, a2), . . . , cl ← Enck(ml, nl, al). For

a list Lc = [c1, c2, . . . , cl] ∈ [{0, 1}∗]l, we likewise write Lm ← Deck(Lc,Ln,La)
where Lm = [m1,m2, . . . ,ml] and m1 ← Deck(c1, n1, a1), m2 ← Deck(c2, n2, a2), . . . ,

ml ← Deck(cl, nl, al).
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Correctness

As was the case in Section 2.3.4, we assume that all IV-based and nonce-based

symmetric encryption schemes are perfectly correct. In the IV case: for all keys

k ∈ K, that have a non-zero probability of being output by Gen, all m ∈M and all

iv ∈ I the following is true with probability one:

If c← Enck(m, iv) and c 6= ⊥, then m← Deck(c, iv).

For the nonce case: for all keys k ∈ K, that have non-zero probability of being output

by Gen, all m ∈ M, all n ∈ N and all a ∈ A the following is true with probability

one:

If c← Enck(m,n, a) and c 6= ⊥, then m← Deck(c, n, a).

Security Notions

Security notions for IV-based and nonce-based symmetric encryption schemes are

similar in style to Definition 8, taking into account IV’s/nonces and ruling out any

additional trivial wins. These security notions were first presented by Namprempre

et al. [112]. We replicate these notions with a slightly changed notation.

In the security notions below there is a noteworthy distinction in the captured security

properties between IV-based schemes and nonce-based schemes. In the latter case,

we aim to capture authenticated encryption properties, providing both confidentiality

and authenticity. In the former case, we only aim to capture confidentiality. An

IV-based scheme must be paired with another mechanism to yield a construction

that meets both properties.

Definition 11 (ivE).

Let ivSE = (Gen,Enc,Dec) be an IV-based symmetric encryption scheme. Let ENC,

$, both initialised by INI, be the algorithms defined in Figure 2.7. For any adversary

A, we define its ivE advantage as:

AdvivE
ivSE(A) = Pr

[
INI : AENC(·) = 1

]
− Pr

[
INI : A$(·) = 1

]
.

The scheme ivSE is (η,R)-ivE secure, if for any adversary A with resources at most

R, its ivE advantage is bounded by η.
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alg. INI

k← Gen

return

alg. ENC(M)

IV ←$ I
C ← Enck(M, IV )

return (IV, C)

alg. $(M)

IV ←$ I
C ← Enck(M, IV )

if C = ⊥
return ⊥

R←$ {0, 1}|C|

return (IV,R)

Figure 2.7: Algorithms for defining ivE.

We next present the security notion for nonce-based symmetric encryption schemes.

This notion is very similar to the IV-based notion, with the caveat that an adversary

must be nonce-respecting, meaning that the adversary must never use the same

nonce twice in queries to the encryption oracles ENC and $.

Definition 12 (nAE).

Let nSE = (Gen,Enc,Dec) be a nonce-based symmetric encryption scheme. Let ENC,

DEC, $ and Err, all being initialised by INI, be the algorithms defined in Figure 2.8.

For any adversary A, we define its nAE advantage as:

AdvnAE
nSE (A) = Pr

[
INI : AENC(·,·,·),DEC(·,·,·) = 1

]
− Pr

[
INI : A$(·,·,·),Err(·,·,·) = 1

]
.

The scheme nSE is (η,R)-nAE secure, if for any adversary A with resources at most

R, its nAE advantage is bounded by η.

The security game for the nAE notion restricts the adversary to not repeat nonces

and to not query, to the decryption oracle, ciphertexts that were returned by the

encryption oracle ENC.

The formulation of the security notion for a nonce-based symmetric encryption scheme

is similar to the security notion definition given for an authenticated symmetric

encryption scheme in Definition 8. We will, therefore, also refer to a nonce-based sym-

metric encryption scheme as a nonce-based AE scheme. We use the two terminologies

interchangeably.

2.3.6 Block Ciphers

Consider a function F : {0, 1}k × {0, 1}n → {0, 1}n, where k is the key length/size

and n is the block length/size. For each k ∈ {0, 1}k, we write Fk : {0, 1}n → {0, 1}n
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alg. INI

k← Gen

LN = []

LC = []

return

alg. $(M,N,A)

if N ∈ LN

return ⊥
C ← Enck(M,N,A)

LN.append(N)

if C = ⊥
return ⊥

R←$ {0, 1}|C|

return R

alg. ENC(M,N,A)

if N ∈ LN

return ⊥
C ← Enck(M,N,A)

LN.append(N)

LC.append(C)

return C

alg. Err(C,N,A)

return ⊥

alg. DEC(C,N,A)

if C ∈ LC

return ⊥
M ← Deck(C,N,A)

return M

Figure 2.8: Algorithms for defining nAE.

defined as Fk(x) = F(k, x). If F is a permutation, we call F a block cipher. Since the

block cipher F is a permutation, there exists an inverse, denoted by F−1, such that

F−1k (Fk(x)) = x. As mentioned above, we generally want a block cipher to be a PRF

and, in some cases, a PRP.

Given a block cipher F, we can define an IV-based symmetric encryption scheme

that uses the CBC (Cipher Block Chaining) mode of operation.

Definition 13 (CBC IV-based symmetric encryption scheme).

Let F : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Define the IV-based symmetric

encryption scheme ivSECBC = (Gen,Enc,Dec), with key space K = {0, 1}k, message

space M = {x ∈ {0, 1}∗ | |x| mod n = 0}, ciphertext space C = {x ∈ {0, 1}∗ |
|x| mod n = 0} and IV space I = {0, 1}n, as follows:

Gen: Sample k←$ {0, 1}k and return k.

Enck(m, iv): Write m = m1 ‖ m2 ‖ · · · ‖ ml for mi ∈ {0, 1}n and c0 = iv. Let

ci = Fk(ci−1 ⊕mi) (i = 1, 2, . . . , l) and c = c1 ‖ c2 ‖ · · · ‖ cl. Return c.

Deck(c, iv): Write c = c1 ‖ · · · ‖ cl for ci ∈ {0, 1}n and let c0 = iv. Let mi =

F−1k (ci)⊕ ci−1 (i = 1, 2, . . . , l) and m = m1 ‖ m2 ‖ · · · ‖ ml. Return m.

If ivSECBC uses uniformly random IVs, then Bellare et al. [17] proved that it meets
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ivE if F is a PRP. However, this result is void if the IVs are not uniformly random.

In Chapter 5, we present several attacks against CBC-mode based schemes in SSH.

2.3.7 Message Authentication

In this section, we give a definition of message authentication schemes and present

security notions that capture the desired security properties of such schemes. A

message authentication scheme enables two remote peers to verify that the message

they receive did, in fact, originate from the other peer. This requires them to have a

shared key, only known to them.

Syntax

Definition 14 (Message authentication scheme).

A message authentication scheme MA = (Gen,Tag,Ver) with key space K ⊆ {0, 1}∗

and message space M⊆ {0, 1}∗ is specified by three algorithms:

- A randomised key generation algorithm Gen that outputs a key k ∈ K. We

write k← Gen.

- A deterministic tagging algorithm Tag that takes as input a key k and a message

m ∈M, and outputs a tag τ ∈ {0, 1}∗. We write τ ← Tagk(m).

- A deterministic verification algorithm Ver that takes as input a key k, a message

m ∈ M and an expected tag τexpected, and outputs a bit v ∈ {0, 1}. We write

v ← Verk(m, τexpected). A tag τexpected is valid for message m if and only if

v = 1.

There is an important subclass of message authentication schemes called Message

Authentication Codes (MAC ). The subclass consists of all message authentication

schemes for which the verification algorithm simply computes the tag on the message

using the tagging algorithm and then checks the output against the expected tag,

see Figure 2.9.

Definition 15 (Message authentication code (MAC)).

A message authentication code MAC = (Gen,Mac) with key space K ⊆ {0, 1}∗ and

message space M⊆ {0, 1}∗ is specified by two algorithms:
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alg. Verk(m, τexpected)

τ ← Tagk(m)

if τ = τexpected

return 1

return 0

Figure 2.9: MAC verification algorithm.

- A randomised key generation algorithm Gen that outputs a key k. We write

k← Gen.

- A deterministic tagging algorithm Mac that takes as input a key k and a message

m ∈M, and outputs a tag τ ∈ {0, 1}∗. We write τ ← Mack(m).

The verification algorithm is fully specified by the tagging algorithm and is depicted

in Figure 2.9.

Unfortunately, there are several serious pitfalls associated with verifying a MAC

tag. For example, not verifying the tag in constant-time (i.e. in time independent

of the position of first bit in tag that does not match the received tag), can lead

to vulnerabilities. Such technicalities can easily be overlooked, even by experts, as

exemplified with Google’s cryptographic toolkit Keyczar (now deprecated) [100], a

very recent 2019 CVE on Apache Tapestry [127] and the Xbox 360 timing attack in

2007 [118]. Furthermore, making the tag verification dependent on code-paths and,

simultaneously, not unifying observable output after a tag verification can also lead

to vulnerabilities. We will see several examples of such a vulnerability in Chapter 5.

Correctness

We require the following correctness condition to be true. For any keys k ∈ K, that

can be output by Gen, and any message m ∈M the following holds with probability

1:

If τ ← Tagk(m), then Verk(m, τ) = 1.

In addition, given a tag τ , we require the tag length |τ | to be “constant” over all

messages. That is, there exists an integer `tag ≥ 1 such that for any key k ∈ K, that

can be output by Gen, and any message m ∈M the following holds with probability
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alg. INI

k← Gen

WIN = false

LM = []

return

alg. TAG(M)

τ ← Tagk(M)

LM.append(M)

return τ

alg. VER(M, τexpected)

v ← Verk(M, τexpected)

if v = 1 and M /∈ LM

WIN = true

return v

Figure 2.10: Algorithms for defining UF-CMA.

1:

If τ ← Tagk(m), then |τ | = `tag.

This condition is akin to the length-regular condition for symmetric encryption

schemes.

We henceforth assume that any message authentication scheme encountered in this

thesis satisfy the two conditions above.

Security Notion

The standard security property that message authentication schemes aim to meet is

existential unforgeability under chosen message attacks, or in short, UF-CMA. In this

notion, an adversary must produce a message and a tag that verify (with respect to

Ver). The adversary is given oracle access to the tagging algorithm but is restricted

not to reuse a message that was already queried to the tagging oracle TAG.

Definition 16 (UF-CMA).

Let MA = (Gen,Tag,Ver) be a message authentication scheme. Let TAG and VER,

both initialised by INI, be the algorithms defined in Figure 2.10. Let FORGE be the

event that WIN = true after a query to VER. For any adversary A, we define its

UF-CMA advantage as:

Advuf-cma
MA (A) = Pr

[
INI, ATAG(·),VER(·) : FORGE

]
.

The scheme MA is (η,R)-UF-CMA secure, if for any adversary A with resources at

most R, its UF-CMA advantage is bounded by η.

There exists a stronger notion than UF-CMA, that allows an adversary to reuse a

message for its forgery. This notion is named strong unforgeability under chosen
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alg. INI

k← Gen

WIN = false

LM = []

return

alg. TAG(M)

τ ← Tagk(M)

LM.append((M, τ))

return τ

alg. VER(M, τexpected)

v ← Verk(M, τexpected)

if v = 1 and (M, τexpected) /∈ LM

WIN = true

return v

Figure 2.11: Algorithms for defining SUF-CMA.

message attacks and denoted by SUF-CMA. This notion only verifies that a message-

tag pair has not previously been produced by a query to the tagging oracle. This

allows an adversary to win by only producing a new tag for a message.

Definition 17 (SUF-CMA).

Let MA = (Gen,Tag,Ver) be a message authentication scheme. Let TAG and VER,

both initialised by INI, be the algorithms defined in Figure 2.11. Let FORGE be the

event that WIN = true after a query to VER. For any adversary A, we define its

SUF-CMA advantage as:

Advsuf-cma
MA (A) = Pr

[
INI, ATAG(·),VER(·) : FORGE

]
.

The scheme MA is (η,R)-SUF-CMA secure, if for any adversary A with resources at

most R, its SUF-CMA advantage is bounded by η.

Clearly, if an adversary can produce a forgery in the UF-CMA sense, then that forgery

is also valid in the SUF-CMA sense (the message part of a message-tag pair has not

been queried to the tagging oracle). That is, SUF-CMA implies UF-CMA. The former

is, in fact, a strictly stronger notion. This can be shown with a similar argument

used to argue for separability between the INT-CTXT and INT-PTXT notions. On

the other hand, the two notions have equivalent strength when we restrict to the

subclass of MACs.

Consider a function F : X → Y with all elements of Y having the same bit-length.

Suppose we define F to be the tagging algorithm and verify tags using the MAC

verification method described earlier. Then, it is possible to show that if F is PRF

secure then F is also UF-CMA secure with only a loss of 1/2|Y| in the reduction,

requiring the co-domain Y to be sufficiently large for the reduction to make sense.

We will not go into details, but refer the reader to [77, 19].
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2.4 SSH

This thesis has a big focus on SSH. In this section, we will therefore provide some

background on SSH, explain its Binary Packet Protocol and describe two of the most

popular implementations of SSH.

SSH (Secure SHell) is a general-purpose secure network communication protocol and

standardised in a series of five RFCs: RFC4250 [101], RFC4251 [134], RFC4252 [132],

RFC4253 [135], RFC4254 [133]. There are two main versions of SSH: version 1 and

version 2. This thesis will only be concerned with version 2 and all references to SSH

will be for this specific version.2 SSH facilitates secure remote login and secure use

of a mixture of network services.

The SSH protocol is very widely used, and all major operating systems come with

built in tools to use SSH. It is the dominant protocol used for automation and

machine management through tools such as ansible [48], and is one of the protocols

that can be used as the transport layer in Git [128].

SSH is often misconstrued as being similar to the network protocol TLS. This is true

when considering the two protocols at a high level; they are both used to securely

transfer data on a network. However, on a technical level they are significantly

different. Firstly, SSH relies on the Trust On First Use (TOFU) trust model, where

a client sets up the trust relationship upon first connection to a remote endpoint.

Secondly, while TLS is solely a transport protocol, SSH defines a service layer going

beyond transport (this layer is coined the connection protocol, runs on top of the

transport layer protocol [135] and user authentication protocol [132], and is defined

in [133]). For example, a client can request a shell through an SSH session that makes

it possible to connect to execute commands on a remote machine. This is a widely

used functionality for remote machine administration. Finally, the packet format in

the two protocols is significantly different both in layout and how cryptography is

applied to them.

2SSH version 1 is not secure. For example, version 1 uses CRC-32 (32-bit Cyclic Redundancy
Check) integrity checks to provide authentication.
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2.4.1 SSH Implementations

In Chapter 4, we will present a detailed discussion of several scans revealing a number

of interesting statistics on SSH servers reachable on the Internet. Among other

things, we highlight which implementations are most prevalent on the server-side and

their preferred choice of SSH encryption scheme. As we will see, the SSH landscape

is dominated by only two implementations: OpenSSH and Dropbear. Below we give

a short introduction to both.

OpenSSH

OpenSSH [66] has been one of the most prominent SSH implementations since its

inception in September 26, 1999 [50]. It was first released for public use in the

operating system OpenBSD on December 1, 1999 [50]. Early OpenSSH developers

did not start from scratch, but forked from the SSH implementation OSSH, written

by Björn Grönvall, which, itself, was a fork of Tatu Ylönen’s SSH implementation

(the author of the original SSH protocol). Ylönen later formed the company SSH

Communications Security Corp to commercialise his SSH efforts. This later led to a

naming controversy in the community [106].

OpenSSH is a complete client and server-side implementation of the SSH version

2 protocol. However, it also extends the protocol with additional features such as

pluggable authentication modules (PAM), certificate authentication, and an expanded

set of available cryptographic algorithms. In addition, OpenSSH includes a suite

of command-line tools such as SCP and SFTP that can be used to perform secure

file transfer. OpenSSH used to contain support for the SSH version 1 protocol, but

support was completely removed from version 7.6 [71] onwards. The newest version

of OpenSSH is version 8.1 [74] (at the time of writing).

OpenSSH can use both LibreSSL [49] or OpenSSL [46] as its cryptographic provider,

natively targeting the former. As a special feature, OpenSSH can be built without

linking to an external cryptographic provider and falls back to its own, low-level

cryptographic implementations. However, doing this disables a number of OpenSSH’s

encryption schemes, e.g. SSH-AES-GCM, because they are only supported through

an external cryptographic provider. On the other hand, the SSH encryption scheme

SSH-ChaCha20-Poly1305 relies entirely on a self-contained implementation.
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Dropbear

Dropbear [87] also implements complete client and server-side support for the SSH

version 2 protocol. Development started in October 2002 [88], and the first public

release was on April 6, 2003 [88]. Amazingly, Dropbear is the product of a single

developer, Matt Johnson, based in Australia (the name dropbear likely derives from

the Australian folklore hoax animal drop bear, a predatory, carnivorous version of

the Koala).

Dropbear is designed to be lightweight and to shine in environments where a low

memory footprint is paramount. As a consequence, Dropbear doesn’t include as

many features as OpenSSH.

Dropbear uses LibTomCrypt [45] as its cryptographic provider, which is a required

dependency.

2.4.2 SSH Binary Packet Protool

The Binary Packet Protocol (BPP) of SSH is defined in Section 6 of RFC 4253 [135].

SSH packets are constructed through a two-step process: payload encoding and

cryptographic processing. These are described below. It is the BPP that defines SSH

encryption schemes utilising a variety of symmetric encryption schemes (of different

types) and message authentication codes.

The Binary Packet Protocol does not define any mode in which it fragments input.

Other SSH service layers that makes use of the BPP as their transport layer might

define such mode. For example, if the BPP is used in a data transport protocol, such

mode would be defined to account for the upper limit of the size of a SSH packet.

Considering this kind of input mode is out-of-scope for this thesis, see Section 3.10.4

for work that deals with this aspect in depth. In Chapter 3 we define fragmentation

in the sense of ciphertext fragmentation.

Encoding

Encoding proceeds as follows. Firstly, if compression is enabled, then the payload

(and only the payload) is compressed. Secondly, a length field and a padding length

field are prepended to the payload and random padding appended. The length
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Length

4 bytes

Padding length

1 byte

Payload Padding

4 ≤ · ≤ 255

Seq. nr.

4 bytes

Length

Figure 2.12: SSH BPP packet layout.

Length Padding length Payload Padding MAC tagSeq. nr.

Encryption scope

Authenticity scope

Figure 2.13: Scope of encryption and authentication for SSH BPP packets.

field has 4 bytes and encodes the combined length in bytes of the padding length

field, payload and padding. The padding length field has 1 byte and encodes the

length of the padding counted in bytes. The SSH standard mandates that an

implementation must be able to support an uncompressed payload of at least 32,768

bytes and support a total packet length — packet length field, padding length field,

uncompressed payload, padding and MAC — of at least 35,000 bytes. Padding must

be between 4 and 255 bytes long and must align the packet length to a multiple of

the block size of the underlying block cipher or 8, whichever is larger; stream ciphers

are instantiated with a block size of 8. A 4-byte sequence number is initially set to 0

when a connection is established and is incremented by 1 for each packet sent. The

sequence number is not sent over the wire, but maintained separately and included

in cryptographic computations on packets. The packet layout after payload encoding

is shown in Figure 2.12.

Cryptographic Processing

SSH provides confidentiality and authenticity through symmetric encryption schemes

and MAC algorithms. RFC 4253 mandates that when encryption is applied, the length

field, padding length field, payload and padding must be encrypted. In addition,

RFC 4253 specifies that the MAC tag must be computed over the concatenation of

the sequence number and the unencrypted packet, enforcing an Encrypt-and-MAC

paradigm, cf. Figure 2.13.
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Naming Scheme for SSH Encryption Schemes

When we refer to an SSH encryption scheme, using a symmetric encryption scheme

X, and possibly, a message authentication code Y, we denote this SSH-specific scheme

by SSH-X-Y. If a message authentication code is not used, we will leave out the last

component of the name. The distinction between SSH encryption schemes and the

underlying algorithms is important to take into account when performing an analysis

of the security assurances of SSH encryption schemes, cf. Chapter 6. We emphasise

the distinction by including SSH directly in the name of the scheme.

Standardised SSH Encryption Schemes

The SSH specifications define a variety of SSH encryption schemes that can be

instantiated using a diverse set of symmetric encryption schemes and MAC algorithms.

RFC 4253 [135] defines 7 symmetric encryption schemes (including IV and nonce-

based) built from 7 block ciphers running in CBC-mode: 3DES, Blowfish, Twofish,

AES, Serpent, IDEA and Cast. In CBC-mode, the IV is, for each encryption, set to

be the final ciphertext block from the previous encryption; the first IV is chosen

uniformly at random. As pointed out in [120, 52] for CBC-mode in general and

in [20, 21] for SSH specifically, this potentially makes SSH vulnerable to chosen-

plaintext attacks. However, these do not (generally) seem to be realisable in practice

due to details of the SSH packet encoding.3 Each block cipher may support several

different key lengths, e.g. the AES options include support for key lengths of 128

bits and 256 bits, denoted by AES128 and AES256, respectively. Of the symmetric

encryption schemes defined in RFC 4253, the scheme built from 3DES is required

while the scheme built from AES128 is recommended.

3The chosen-plaintext attack works, at a high level, as follows. Assume you encrypt a plaintext
P = P1 ‖ P2 ‖ P3 using CBC-mode and the resulting ciphertext is C = C1 ‖ C2 ‖ C3. Also assume
that C′ is the last block of the previous ciphertext (this is the “IV” used in the encryption of P ).
Let G be a guess of the first block P1 of the plaintext P . Also assume that an adversary can force
the encryption of G⊕ C′ ⊕ C3 immediately after seeing C and let CG be the resulting ciphertext
(block). Since the underlying block cipher is deterministic, if CG = C1 the adversary knows that
the guess G was correct. Notice it is crucial that the adversary can force the encryption of exactly
G⊕C′⊕C3. However, in SSH the plaintext being fed into the CBC encryption algorithm is encoded.
Therefore, the first plaintext block fed into the CBC-mode encryption algorithm, after encoding, is
actually: length ‖ padding length ‖ (G⊕ C′ ⊕ C3)[0 : 87], where the first two fields have length 40
bits. Note that if the adversary does not know the exact length of the plaintext P , it would not be
possible to accurately determine the length field or the padding length field used in the encryption
of P . [20, Section 3] describes a method that increases the likelihood of this attack succeeding, see
the reference for details.
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In addition to symmetric encryption schemes using block ciphers in CBC-mode, a

scheme using the RC4 stream cipher is defined (for historical reasons this cipher is

denoted by arcfour). RFC 4344 [13] defines CTR-mode options for all the symmetric

encryption schemes mentioned in RFC 4253. Additionally, RFC 5647 [85] defines

an SSH encryption scheme using AES-GCM. In this scheme, the padding length,

payload and padding fields are encrypted and integrity protected. However, the

length field is not encrypted but instead included as Additional Data. Formally,

then, SSH-AES-GCM deviates from the requirement of RFC 4253 to encrypt the

length field. This affects the security properties the SSH scheme can achieve in the

ciphertext fragmentation model, cf. Chapter 3 and Chapter 6.

RFC 4253 specifies as MAC algorithms HMAC-SHA1, HMAC-SHA1-96 (output

truncated to 96 bits), HMAC-MD5 and HMAC-MD5-96. Of these, support for

HMAC-SHA1 is required and support for HMAC-SHA1-96 is recommended. The

later RFC 6668 [34] defines HMAC-SHA2-256 and HMAC-SHA2-512, with the former

being recommended and the latter optional. A draft RFC [109] specifies UMAC-32,

-64, -94 and -128 for use in SSH. Here, the sequence number is passed as a nonce to

UMAC.

The symmetric encryptions schemes and MAC algorithms mentioned are composed,

in various (some excluded) pairs to form SSH encryption schemes. For example,

no SSH RFC defines the SSH encryption scheme SSH-AES128-CBC-UMAC-32. All

SSH encryption schemes are defined by static strings, which are also passed between

client and server during an SSH session establishment to negotiate the specific SSH

encryption scheme. We will elaborate on this further when discussing the development

of new SSH encryption schemes in Section 7.8.1.

SSH Encryption Schemes in OpenSSH

OpenSSH supports additional SSH encryption scheme options beyond those specified

in the general SSH RFCs. As we shall see in Chapter 4, these are quite widely

adopted and therefore warrant analysis. We present such an analysis in Chapter 6.

OpenSSH has also deprecated, and in some cases, completely removed support for

certain SSH encryption schemes.

Since OpenSSH version 6.2, it has been possible to run supported algorithms in an

Encrypt-then-MAC mode with the encryption and MAC processing being provided
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by any of the supported algorithms. Usage is signalled by negotiating an “etm”-MAC

during key exchange (if AES-GCM or ChaCha20-Poly1305 (see below) is negotiated as

symmetric encryption scheme, the special behaviour triggered when negotiating an

etm-MAC is disabled). We refer to this scheme as SSH-Generic-EtM. It is instantiated

by a symmetric encryption scheme and MAC. The cryptographic processing in

the SSH-Generic-EtM scheme is similar to that of the SSH-AES-GCM scheme, with

the length field not being encrypted but included in the MAC scope; for details,

see Section 6.4.

The RFC draft [111] defines the SSH encryption scheme SSH-ChaCha20-Poly1305.

This scheme combines ChaCha20, a high-speed stream cipher [28], and Poly1305MAC,

a high-speed one-time message authentication code based on a design from [26].

Here, the length field is encrypted using a separate instance of ChaCha20, but the

construction otherwise follows RFC 4253. For details, see Section 6.3. This option

has been supported in OpenSSH since version 6.5 [69].

There has been a steady trend towards the elimination of SSH encryption schemes from

OpenSSH that use weak algorithms. OpenSSH 6.7 disabled CBC-mode schemes and

the RC4 scheme by default, while OpenSSH 6.9 promoted SSH-ChaCha20-Poly1305

to be the default SSH encryption scheme. OpenSSH 7.2 disabled SSH encryption

schemes using Blowfish, Cast, RC4, MD5 and Truncated-HMAC. OpenSSH 7.4 disabled

SSH-3DES-CBC from the client’s default proposal. OpenSSH 7.6 removed support

for SSH encryption schemes using RC4 and all schemes involving Blowfish or Cast.

In addition, this version removed support for HMAC-RIPEMD160 (and deprecated

RSA keys of size less than 1024 bits).

OpenSSH has also seen numerous interesting additions of newer cryptographic

algorithms, apart from the ones mentioned earlier. OpenSSH 4.7 [67] added support

for schemes using the MAC algorithm UMAC-64 [98] and OpenSSH 6.2 [68] extended

support to also include UMAC-128. Release 6.5 [69] added supported for X25119 [27]

and ED25519 [30] signatures. OpenSSH release 7.7 [72] added experimental support

for the post-quantum signature scheme XMSS [41] based on RFC 8391 [84]. In the 8.0

release [73], the OpenSSH developers implemented experimental support for hybrid

key exchanges using the key exchange methods Streamlined-NTRU-Prime [29] and

X25119. In addition, this release made generating RSA keys with a key size of 3072

bits the default.
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SSH Encryption Schemes in Dropbear

Dropbear has a much less involved history of cryptographic development. Only SSH

encryption schemes that use either CTR-mode or CBC-mode symmetric encryption

schemes are supported, with CTR support being added in 2008 [88]. All SSH

encryption schemes use the standard Encrypt-and-MAC paradigm. For CTR-mode

SSH encryption schemes, block ciphers AES, 3DES and Twofish are supported. For

CBC-mode SSH encryption schemes, block ciphers AES, 3DES, Twofish and Blowfish

are supported. For both modes, the Twofish schemes are disabled by default.

Dropbear supports all the standardised HMAC MAC algorithms mentioned above,

except HMAC-MD5-96.

The newest version of Dropbear is 2019.78 [88] (at the time of writing). It prefers

the SSH encryption scheme SSH-AES128-CTR-HMAC-SHA1-96.
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Ciphertext Fragmentation

In this chapter, we present the theory of symmetric encryption schemes supporting

ciphertext fragmentation. We formalise the setting and define several security notions,

in turn, repairing a deficient notion from earlier work.

There are several security models in the literature that relate to the ciphertext frag-

mentation model. We review some of the related models at the end of this chapter.

3.1 On the Choice of Security Model

In this thesis, we are concerned with the analysis of the secure transport layer in

SSH, defined by the various supported SSH encryption schemes. Traditionally, secure

transport layers have been built using standard symmetric encryption schemes. While

the former can be built from the latter, such construction is certainly non-trivial, as

the latter aspires for significantly more complex functionality. Additionally, security

properties of symmetric encryption schemes are modelled using atomic security

models. But they do not accurately capture the security properties that SSH, and

secure transport layers in general, aspire to. We elaborate on the discrepancy in the

sequel.

In Section 2.3, we saw several security notions capturing confidentiality and integrity

security properties of different types of symmetric encryption schemes. Common for

all notions is the requirement that when decrypting a ciphertext, the entire ciphertext,

and only the ciphertext, is supplied as a parameter to the decryption algorithm.

We call this delivery method atomic, and we call security models that assume it

atomic security models. When a security property is proved to hold in an atomic

security model, an application must ensure that the decryption process respects

atomic delivery. Otherwise, the proof that a security property holds might not carry

over into practice. However, such an assumption is practically impossible to satisfy
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when applications interact with complex networks. In such networks, fragmentation

can occur at any hop on the network path as a result of protocols such as TCP [116]

and IP [115], fragmentation an application cannot control. Fragmentation is also

often implemented by applications. This is, for example, done to avoid sending large

network packets, which would otherwise rely on fragmentation mechanisms at hops on

the network path to comply with physical limitations. These mechanisms are known

to potentially incur unacceptable performance penalties [94]. As a result, a ciphertext

is not necessarily delivered to an application in one piece but may arrive fragmented,

and an application must cater for the fragmented delivery during decryption. We

call this network/application-induced fragmentation ciphertext fragmentation. We

next focus on SSH specifically, motivating our choice of security model.

SSH should aim to protect against replays and reordering of messages, whereas

standard symmetric encryption schemes do not. Our choice of security model should

capture this property naturally. Secondly, SSH has to operate over TCP/IP, which

permits the delivery of ciphertexts to the receiver in an arbitrarily fragmented manner,

as detailed above. Extending a standard symmetric encryption scheme to operate

over TCP/IP requires intrusive changes to the decryption algorithm, to the point

that even its syntax must become significantly different. It is easy to overlook this

aspect and assume that such a transformation is only cosmetic and will not affect

security. As a pertinent example, Bellare et al. [20] proved (in a very strong sense)

security properties of a variant of SSH encryption schemes using CBC-mode. Yet, it

was exactly the mechanism supporting ciphertext fragmentation that allowed the

subsequent plaintext-recovery attack by Albrecht et al. [5] against both the original

CBC-mode construction used in SSH and the variant proven secure by Bellare et al.

Not catering for ciphertext fragmentation is a serious shortcoming when analysing

secure transport layers. We, therefore, follow the ciphertext fragmentation security

model put forward in [36] (which is strongly motivated by [20, 114], see Section 3.10.1

and Section 3.10.2). The ciphertext fragmentation model uses a new symmetric

encryption scheme type, named symmetric encryption scheme supporting ciphertext

fragmentation, to capture ciphertext fragmentation functionality. This new symmetric

encryption scheme type can be used to more safely build secure transport layers,

see Chapter 7. We give a detailed introduction to the ciphertext fragmentation model

in the rest of this chapter, as well as elaborating on several of its features.
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1 2

f1

3

Figure 3.1: Fragment f1 consisting of ciphertexts c1 = (1), c2 = (2) and part of
ciphertext c3 = (34).

1

f1

2 3

f2

4

Figure 3.2: Fragments f1 and f2 consisting of ciphertext fragments of ciphertext
c1 = (1234).

3.2 Syntax

A few difficulties arise when attempting to define a symmetric encryption scheme that

natively caters for ciphertext fragmentation. Consider the situations in Figure 3.1

and Figure 3.2. In the former figure, the fragment f1 consists of two ciphertexts c1

and c2, and the first component of ciphertext c3. The decryption algorithm should be

able to cut f1 into c1, c2 and the partial c3, and decrypt to messages corresponding

to the decryption of c1 and c2. In the latter figure, a single ciphertext c1 is divided

between two fragments f1 and f2. The decryption algorithm must still be able to

decrypt c1 after first seeing and processing f1 and then subsequently seeing and

processing f2. Informally, the decryption algorithm is, at a minimum, forced to

support some sort of state in the sense of buffering. In [36], this minimal degree of

statefulness is called stateless beyond buffering. We will not treat this special notion

of state in this thesis.

Let S⊥ denote the set of errors that either the encryption or decryption algorithm

can output. Note that we allow multiple errors, which reflects the fact that when

a real scheme fails it might fail in different ways that can be distinguished by an

adversary. This position is different than the one we take for standard symmetric

encryption schemes that can only output one type of error, cf. Section 2.3. Let

¶ denote a symbol such that ¶ 6∈ ({0, 1} ∪ S⊥)∗. We use ¶ to indicate the end of

plaintext messages. It models the need of the consuming application to correctly

parse the output from the decryption algorithm into individual plaintexts.

Definition 18 (Symmetric encryption scheme supporting ciphertext fragmentation).

A symmetric encryption scheme supporting ciphertext fragmentation

fSE = (Gen,Enc,Dec) with associated key space K ⊆ {0, 1}∗, plaintext space M ⊆
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{0, 1}∗, ciphertext space C ⊆ {0, 1}∗ and error set S⊥ (S⊥ ∩ (M∪C) = ∅) is specified

by three algorithms:

- A randomised key generation algorithm Gen that outputs a key k ∈ K, ini-

tial encryption state σ and initial decryption state %, respectively. We write

(k, σ, %)← Gen.

- A probabilistic or deterministic encryption algorithm Enc that takes as input

a key k, a plaintext m ∈ M and current encryption state σ, and outputs a

ciphertext c ∈ C ∪ S⊥ and the updated encryption state σ′. We write (c, σ′)←
Enck(m,σ).

- A deterministic decryption algorithm Dec that takes as input a key k, a ci-

phertext fragment f ∈ {0, 1}∗ and current decryption state %, and outputs a

plaintext fragment m ∈ ({0, 1,¶} ∪ S⊥)∗ and the updated decryption state %′.

We write (m, %′)← Deck(f, %).

Note, neither the encryption nor decryption algorithm maintain any internal state.

Their entire state must be contained in their state parameter.

As for standard symmetric encryption schemes, we define a list notation. For a

list Lm = [m1,m2, . . . ,ml] ∈ Ml, we write (Lc, σ′) ← Enck(Lm, σ) where Lc =

[c1, c2, . . . , cl], and (c1, σ1) ← Enck(m1, σ), (c2, σ2) ← Enck(m2, σ1), . . ., (cr, σl) ←
Enck(ml, σl−1), and σ′ = σl. Similar notation is defined for the decryption algorithm

Dec in the natural way.

There are a few things worth pointing out after seeing Definition 18. Firstly, the

scheme might be made stateless by letting the key generation algorithm output

empty strings instead of initial states and allowing the encryption and decryption

algorithm to ignore the state. Secondly, the decryption algorithm must be able to

handle fragments that decrypt to multiple plaintexts, possibly mixed with errors, or

that decrypt to nothing. The latter case can occur if a fragment does not contain

enough data to decrypt at all.

We assume that all symmetric encryption schemes supporting ciphertext fragmen-

tation are length-regular. We have seen what that means for the different flavours

of symmetric encryption schemes in Section 2.3. Symmetric encryption schemes

supporting ciphertext fragmentation are length-regular if for all keys k ∈ K, that

can be output by Gen, all states σ, c← Enck(m,σ) and c /∈ S⊥, then the length of
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c only depends on the length of m. Hence, as for standard symmetric encryption

schemes, the length of a ciphertext must be completely determined by the length of

the message.

3.3 Correctness

In Section 2.3, we defined several different types of a symmetric encryption scheme.

All schemes, no matter the type, are required to satisfy a correctness condition.

This requirement is natural because we only want to consider symmetric encryption

schemes that “make sense” and avoid degenerate cases. For the same reason, we

want to focus on natural schemes that satisfy the syntax of Definition 18. However, it

turns out that it is not trivial to define what natural means for schemes that support

ciphertext fragmentation. In fact, there are several ways to define a correctness

condition, that all “make sense”. By our choice of condition it becomes clear that

some sort of buffering in the decryption algorithm is necessary. First, we provide a

few words of motivation, then proceed to present the correctness condition.

If ciphertexts correspond exactly to fragments, the situation is equivalent to the

atomic setting. The least complicated diversion from this is when a sequence of

plaintexts are encrypted, and the corresponding ciphertexts is contained in exactly

one fragment, see Figure 3.3. We would then expect to see all ciphertexts decrypted

when the decryption algorithm is given the fragment as input. This can be generalised

to having the sequence of ciphertexts split between several fragments but always

having a ciphertext boundary coincide with a fragment boundary, see Figure 3.4.

The expectation is then to see all ciphertexts contained in each fragment, decrypted.

The situation becomes more intricate if ciphertext boundaries do not coincide with

fragment boundaries. For example, consider the situation in Figure 3.5 where two

ciphertexts c1 = (12) and c2 = (3) are split between two fragments f1 = (1) and

f2 = (23). We require that after receiving the second fragment, the decryption

algorithm decrypt both ciphertexts. That is, the decryption algorithm must decrypt

both ciphertexts to their correct plaintexts and return the plaintexts separated by

the plaintext delimiter ¶. As a last case, consider a situation where some extra data

is appended to a fragment. We then require that the decryption algorithm can still

produce a correct decryption of the first ciphertext. This is depicted in Figure 3.6,

where a ciphertext c = (123) is split between two fragments f1 = (1) and f2 = (234′)
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1 2 3

f1

4 5 6

Figure 3.3: Fragment f1 consisting of ciphertexts c1 = (12), c2 = (345) and c3 = (6).

1

f1

2 3 4

f2

5 6

f3

Figure 3.4: Fragments f1, f2 and f3 consisting of ciphertexts c1 = (12), c2 = (345)
and c3 = (6) (respectively), where ciphertext boundaries coincide with fragment
boundaries.

but where some extra ciphertext has been appended to the second fragment. The

ciphertext fragment might be part of a second valid ciphertext or might be invalid. In

either case, it is required that the decryption algorithm decrypts the first ciphertext

correctly.

For the formal definition, we define a map ¶ : ({0, 1}∗ ∪ S⊥)∗ → ({0, 1}∗ ∪ S⊥ ∪ {¶})∗

by ¶(m1,m2, . . . ,mr) = m1 ‖ ¶ ‖ m2 ‖ ¶ ‖ · · · ‖ mr ‖ ¶. We trust that overloading

the notation for ¶ is not a problem. Below we give the correctness definition of a

symmetric encryption scheme supporting ciphertext fragmentation. It is required

throughout this thesis that any symmetric encryption scheme that supports ciphertext

fragmentation satisfy this definition.

Definition 19 (Correctness).

A symmetric encryption scheme supporting ciphertext fragmentation

fSE = (Gen,Enc,Dec) is correct: if for all tuples (k, σ, %) that can be output from

Gen, for all Lm ∈ [M]∗ and for all Lf ∈ [{0, 1}∗]∗, it holds true with probability one:

If (Lc, σ′)← Enck(Lm, σ) and ||(Lc) � ||(Lf ) and (Lmf
, %f )← Deck(Lf , %),

then ¶(Lm) � ||(Lmf
).

1

f1

2

f2

3

Figure 3.5: Fragments f1 and f2 consisting of ciphertexts c1 = (12) and c2 = (3).
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1

f1

2 3

f2

4’

Figure 3.6: Fragments f1 and f2 consisting of ciphertext c1 = (123) and extra data
(4′).

3.3.1 Alternative Correctness Definitions

The situation arising in Figure 3.6 illustrates one choice that has to be made when

defining correctness: how should the extra data be handled? Definition 19 requires

that any excess ciphertext is carried over to the next execution of the decryption

algorithm to allow correct decryption when a ciphertext is split between two or more

fragments (making buffering necessary). This is one particular interpretation of

“correct”. Below, we consider two alternative interpretations.

Flush Ignore any surplus ciphertext, and return the decrypted plaintext(s). This

interpretation has the benefit of removing the requirement for any buffering

between two distinct decryption calls.

Fault Return an error if a fragment contains partial ciphertext, deeming the fragment

invalid.

The two interpretations above both represent a well-defined correctness condition.

However, we opted for the least restrictive correctness definition, and allow fragments

to extend over multiple ciphertexts. This is also the choice made in [36].

3.4 Confidentiality

In this section, confidentiality of messages in the presence of fragmentation is defined.

It is obvious that any conventional confidentiality notion for symmetric encryption

schemes that do not include the decryption algorithm, such as IND-CPA, can be

used for the fragmentation case as well (except one has to use a stateful version

of the security notion, see Section 3.10.1). This is no longer the case for IND-CCA

style notions where we have to take into account the special behaviour of the

decryption algorithm. Such a notion was first formalised in [36], denoted by IND-sfCFA.

Unfortunately, the notion is unsatisfiable as presented because of a generic attack.
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alg. INI

sync = true

ie = 0

LC = []

LM = []

SD = ε

SF = ε

b←$ {0, 1}
(k, σ, %)← Gen

return

alg. LR(b,M0,M1)

if |M0| 6= |M1|
return ⊥

(C, σ′)← Enck(Mb, σ)

LC.append(C)

LM.append(Mb ‖ ¶)
ie = ie + 1

return C

alg. DEC(F )

(M,%′)← Deck(F, %)

SF = SF ‖ F
SD = SD ‖M
if sync = true

U = {l | ||(LC[0 : l]) � SF} ∪ {ie}
jd = min (U)

if SF � ||(LC[0 : jd])

M = ε

else

M = SD % ||(LM[0 : jd − 1])

if ||(LC[0 : jd]) � SF

M = SD % ||(LM[0 : jd])

if M 6= ε

sync = false

return M

Figure 3.7: Algorithms for defining IND-sfCFA advantage.

We will treat this issue in depth in Section 3.8. We propose a definition that fixes

the deficiency, and it is this definition we will use throughout.

Definition 20 (IND-sfCFA).

Let fSE = (Gen,Enc,Dec) be a symmetric encryption scheme supporting ciphertext

fragmentation. Let LR and DEC, all being initialised by INI, be the algorithms defined

in Figure 3.7. For any adversary A, we define its IND-sfCFA advantage as:

Advind-sfcfa
fSE (A) = 2 · Pr

[
INI : ALR(b,·,·),DEC(·) = b

]
− 1.

The scheme fSE is (η,R)-IND-sfCFA secure if for any adversary A with resources at

most R, its IND-sfCFA advantage is bounded by η.

The encryption oracle LR encrypts a plaintext, depending on a bit b and appends

the plaintext and resulting ciphertext to two separate lists. This information is used

in the decryption oracle to decide when to start releasing plaintext (i.e. when to go

out-of-sync) and to decide what to release. It then returns the resulting ciphertext,

which might be an error, and increments the encryption invocation counter by one.

The decryption oracle DEC is a complex oracle responsible for detecting attack

attempts and ruling out trivial wins. An adversary is allowed to query any ciphertext

fragment to the decryption oracle, including ciphertext output by the encryption

oracle. To avoid trivial wins the decryption oracle suppresses output when ciphertext
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fragment queries do not deviate (i.e. are in-sync) from the sequence of ciphertexts

output by the encryption oracle. When the decryption oracle goes out-of-sync,

plaintext produced from in-sync ciphertexts will be discarded from the output, again

to avoid trivial wins. Detecting a deviation correctly and discarding plaintexts

produced from in-sync ciphertexts, is made difficult by the complex relationship

between adversarially chosen-ciphertext fragments and the original ciphertext output

by the encryption oracle. However, it is crucial that the decryption oracle allows

in-sync queries in order to capture stateful security (e.g. to allow an adversary to

exploit weaknesses related to the state of the decryption algorithm by first querying

in-sync ciphertexts). If a deviation is detected, plaintext is returned depending on

the reason for the deviation. Essentially, if the deviation occurred because of a

bit difference in the two ciphertext sequences (output from encryption oracle and

queries to the decryption oracle), then SD % ||(LM[0 : jd − 1]) will be returned. But,

if the deviation is a result of the adversary submitting more ciphertext than has

been produced by the encryption oracle, then SD % ||(LM[0 : jd]) will be returned.

Boldyreva et al. [36] missed the last case making a trivial win possible, see Section 3.8

for details.

Traditional confidentiality security notions that use indistinguishability, such as

IND-CPA, have results showing equivalence to semantic security (first defined in

[78]). Semantic security precisely describes the security property, but with the

downside of being difficult to work with. The indistinguishably approach is much

easier to work with, but lacks the clear intuition the semantic definition gives. In the

fragmentation case, we only have the indistinguishably definition and lack a more

intuitive definition (possibly together with an equivalence proof) that can show we

have found the “correct” definition. Furthermore, traditional notions, by virtue of

being traditional, have stood the test of time and can be considered sound security

notions. No security notion in the ciphertext fragmentation model has this luxury;

they have all yet to stand the test of time.

3.5 Authenticity

In the original work [36], no definition of authenticity is given. We give a definition

that follows the approach of the INT-CTXT notion (Definition 7).

Definition 21 (INT-sfCTF).
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alg. INI

sync = true

ie = 0

LC = []

LM = []

SD = ε

SF = ε

(k, σ, %)← Gen

return

alg. ENC(M)

(C, σ′)← Enck(M,σ)

LC.append(C)

LM.append(M ‖ ¶)
ie = ie + 1

return C

alg. DEC(F )

(M,%′)← Deck(F, %)

SF = SF ‖ F
SD = SD ‖M
if sync = true

U = {l | ||(LC[0 : l]) � SF} ∪ {ie}
jd = min (U)

if SF � ||(LC[0 : jd])

M = ε

else

M = SD % ||(LM[0 : jd − 1])

if ||(LC[0 : jd]) � SF

M = SD % ||(LM[0 : jd])

if M 6= ε

sync = false

return M

Figure 3.8: Algorithms for defining INT-sfCTF advantage.

Let fSE = (Gen,Enc,Dec) be a symmetric encryption scheme supporting ciphertext

fragmentation. Let ENC and DEC, both being initialised by INI, be the algorithms

defined in Figure 3.8. Let FORGE be the event that DEC returns an element from

{0, 1,¶}+. For any adversary A, we define its INT-sfCTF advantage as:

Advind-ctf
fSE (A) = Pr

[
INI, AENC(·),DEC(·) : FORGE

]
.

The scheme fSE is (η,R)-INT-sfCTF secure, if for any adversary A with resources at

most R, its INT-sfCTF advantage is bounded by η.

The security game played is essentially the same security game played in the IND-sfCFA

game. But instead of guessing a bit, we measure the ability of an adversary to produce

a ciphertext that makes DEC output an element from {0, 1,¶}+. Note that the

adversary can choose any ciphertext, even ciphertexts that have been output by the

encryption oracle. Hence, to meet the authenticity notion INT-sfCTF, the decryption

algorithm is normally required to include the state in the authenticity protection, in

some way. For example, the state could be included in a MAC computation.

3.6 Boundary Hiding

It is standard to assume that a symmetric encryption scheme is allowed to leak the

length of an underlying plaintext, which is also the convention followed in this thesis.
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However, leaking the length of a plaintext can be potentially dangerous [54, 55, 130].

The SSH Binary Packet Protocol (cf. Section 2.4.2) attempts to hide plaintext

lengths by encrypting metadata such as the packet length field. Other protocols

such as TLS have an explicit length field and therefore do not achieve any hiding of

plaintext lengths. Boldyreva et al. [36] formalised boundary hiding security notions

for passive and active adversaries. These notions provide a form of length hiding for

sequences of plaintexts, intended to capture formally what SSH attempts to achieve

(see Section 6.6 for a bit more detail on this). They are replicated below.

Definition 22 (BH-CPA).

Let fSE = (Gen,Enc,Dec) be a symmetric encryption scheme supporting ciphertext

fragmentation. Let LR-BH, initialised by INI, be the algorithms defined in Figure 3.9.

For any adversary A, we define its BH-CPA advantage as:

Advbh-cpa
fSE (A) = 2 · Pr

[
INI : ALR-BH(b,·,·) = b

]
− 1.

The scheme fSE is (η,R)-BH-CPA secure, if for any adversary A with resources at

most R, its BH-CPA advantage is bounded by η.

Definition 23 (BH-sfCFA).

Let fSE = (Gen,Enc,Dec) be a symmetric encryption scheme supporting ciphertext

fragmentation. Let LR-BH and DEC, both being initialised by INI, be the algorithms

defined in Figure 3.9. For any adversary A, we define its BH-sfCFA advantage as:

Advbh-sfcfa
fSE (A) = 2 · Pr

[
INI : ALR-BH(b,·,·),DEC(·) = b

]
− 1.

The scheme fSE is (η,R)-BH-sfCFA secure, if for any adversary A with resources at

most R, its BH-sfCFA advantage is bounded by η.

The passive boundary hiding game BH-CPA captures the case where an adversary

tries to gather information from ciphertext lengths. This property is quantified

by an indistinguishability game, where an adversary can ask a left-or-right oracle

to encrypt one of two sequences of plaintexts, as long as the total length of the

resulting ciphertexts is the same for both sequences. To win, the adversary must

distinguish which sequence is being encrypted. Note, that we do not require that

the two plaintext sequences contain the same number of plaintexts, nor that the

plaintexts have the same lengths. Therefore, intuitively, a scheme that does not hide

plaintext lengths (e.g. appending a length field to the ciphertext) cannot satisfy the
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alg. INI

sync = true

ie = 0

LC = []

LM = []

SD = ε

SF = ε

b←$ {0, 1}
(k, σ, %)← Gen

return

alg. LR-BH(b,LM0 ,LM1)

(LC0 , σ
′
0)← Enck(LM0 , σ)

(LC1
, σ′1)← Enck(LM1

, σ)

C0 = ||(LC0
)

C1 = ||(LC1
)

if |C0| 6= |C1|
return ⊥

σ′ = σ′b

for k = 0 . . .
∣∣LCb

∣∣− 1

ie = ie + 1

LC.append(LCb
[k])

LM.append(LMb
[k] ‖ ¶)

return LCb

alg. DEC(F )

(M,%′)← Deck(F, %)

SF = SF ‖ F
SD = SD ‖M
if sync = true

U = {l | ||(LC[0 : l]) � SF} ∪ {ie}
jd = min (U)

if SF � ||(LC[0 : jd])

M = ε

else

M = SD % ||(LM[0 : jd − 1])

if ||(LC[0 : jd]) � SF

M = SD % ||(LM[0 : jd])

if M 6= ε

sync = false

return M

Figure 3.9: Algorithms for defining BH-CPA and BH-sfCFA advantage.

BH-CPA notion. The active boundary hiding game BH-sfCFA captures an adversary

that tries to infer information by means of, for example, flipping bits in the stream

of fragments. An adversary is both given access to the left-or-right oracle as in the

BH-CPA security game, as well as a decryption oracle. Note that neither definition

attempts to capture side-channel attacks based on, for example, the time taken to

process ciphertext fragments. Rather, they are focussed on information that leaks

directly to the adversary via the ciphertexts themselves, or from error messages

received during decryption. Nevertheless, as we show in Chapter 6, none of the SSH

encryption schemes currently supported in OpenSSH achieves BH-sfCFA security due

to simple bit-flipping attacks. This is likely true for all SSH implementations, but

we have not investigated this further. In Section 7.6, we discuss this topic further

with respect to libInterMAC, a library implementing a symmetric encryption scheme

supporting ciphertext fragmentation, that meets both BH-CPA and BH-sfCFA.

Below we give two relations that will become useful later on. The first theorem

says that if a symmetric encryption scheme supporting ciphertext fragmentation is

length-regular and has ciphertexts that are indistinguishable from random strings,

then the scheme also (passively) hides ciphertext boundaries. For this theorem,

we assume that the notion IND$-CPA defined in Definition 5 is extended to cover

symmetric encryption schemes supporting ciphertext fragmentation. The second

theorem says that for length-regular schemes, (active) boundary hiding implies
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left-or-right indistinguishability in the sense of IND-sfCFA.

Theorem 2.

Let fSE = (Gen,Enc,Dec) be a (length-regular) symmetric encryption scheme sup-

porting ciphertext fragmentation. Then for any BH-CPA adversary Abhcpa against

fSE, there exists an IND$-CPA adversary A$cpa against fSE such that:

Advbh-cpa
fSE (Abhcpa) ≤ 2 · Advind$-cpa

fSE (A$cpa).

If Abhcpa makes qe encryption queries totalling µe number of bits, then A$cpa makes

at most µe encryption queries totalling at most µe number of bits.

Proof. Since fSE is length-regular, there exists a function f such that f(m) is the

length of the ciphertext under the encryption of m. For a list Lm, we let f(Lm)

denote the sum of f(m′) over strings m′ contained in Lm. For any adversary Abhcpa,

we construct A$cpa as follows: Adversary A$cpa picks a bit d uniformly at random and

runs Abhcpa. Then on an encryption query (Lm0 ,Lm1), A$cpa simulates the special

left-or-right encryption oracle to Abhcpa by first checking that f(Lm0) = f(Lm1) and

then uses the bit d to pick Lmd
, encrypting each list component-wise (by querying

its IND$-CPA encryption oracle), and finally, returning the concatenation of the

resulting ciphertexts. If the first length check fails, ⊥ is returned instead. If Abhcpa

outputs d then A$cpa outputs 1 and 0 otherwise. If the IND$-CPA oracle is ENC,

A$cpa provides Abhcpa with a perfect simulation of the BH-CPA game with a random

bit d. If the IND$-CPA oracle is $, the replies to the oracle queries by Abhcpa will be

independent of d. In turn, the output from Abhcpa is equal to d with probability 1/2.

Hence, A$cpa outputs 1 with probability 1/2. Thus

Advind$-cpa
fSE (A$cpa) = Pr

[
INI : AENC(·)

$cpa = 1
]
− Pr

[
INI : A$(·)

$cpa = 1
]

= Pr
[

INI : ALR-BH(d,·,·)
bhcpa = d

]
− Pr

[
INI : A$(·)

$cpa = 1
]

= Pr
[

INI : ALR-BH(d,·,·)
bhcpa = d

]
− 1

2

=
1

2
· Advbh-cpa

fSE (Abhcpa).

Note that each encryption query by Abhcpa can consist of one list that is empty and

one list that consist entirely of 1-bit plaintexts. Since A$cpa is forced to encrypt a

list component-wise, the resource consumption follows.

The theorem above first appeared in [36], but with the difference that the encryption

scheme fSE was not assumed to be length-regular. This is, however, required. The
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proof constructs a reduction from BH-CPA to IND$-CPA. The reduction must ensure

that any encryption oracle queries from the boundary hiding adversary must produce

ciphertexts of equal total length. Assuming length regularity ensures that the

reduction can enforce the condition. Furthermore, the original theorem stated that

the resource consumption of the reduction is similar to the assumed adversary. This

is not true in general, as can be seen from the proof.

The implication in Theorem 2 is strict. This can be seen by applying an extra

encoding of the ciphertexts that does not break the boundary hiding property. Take

the ciphertext output from the encryption algorithm and re-encode it by doubling

any bit. That is, apply the following maps to each bit of the ciphertext: 0 → 00

and 1→ 11. Clearly, the augmented scheme still achieves boundary hiding, but the

ciphertexts are certainly not indistinguishable from a random string (of the same

length).

Theorem 3.

Let fSE = (Gen,Enc,Dec) be a (length-regular) symmetric encryption scheme sup-

porting ciphertext fragmentation. Then for any IND-sfCFA adversary Asfcfa against

fSE, there exists a BH-sfCFA adversary Abhcfa against fSE such that:

Advind-sfcfa
fSE (Asfcfa) ≤ Advbh-sfcfa

fSE (Abhcfa),

where adversary Abhcfa consumes resources equal to Asfcfa.

Proof. The proof is straightforward. For any adversary Asfcfa, we construct Abhcfa

as follows: Adversary Abhcfa runs Asfcfa. Abhcfa forwards any encryption queries

from Asfcfa to its own encryption oracle, after checking that the bit-length of the

two plaintexts is the same. If the length of the two plaintexts is not equal, Abhcfa

returns the error ⊥. Likewise, Abhcfa forwards any decryption queries from Asfcfa to

its own decryption oracle. Note that since the length of the two plaintexts is the

same and fSE is length-regular, the bit-length of the corresponding ciphertexts will

be the same. Abhcfa returns the same bit as Asfcfa returns. This provides Asfcfa with

a perfect simulation of IND-sfCFA. We thus have that:

Advbh-sfcfa
fSE (Abhcfa) = Advind-sfcfa

fSE (Asfcfa).
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The reverse of Theorem 3 is not true: append a special marker to each ciphertext, e.g.,

1128. An adversary can then, with high probability, delineate ciphertext boundaries

by searching for the special marker string, while the scheme remains IND-sfCFA

secure.

3.7 Denial-of-Service

Fragmentation can aid in the successful execution of Denial-of-Service (DoS) attacks.

Consider, for example, the SSH protocol and its conventional SSH encryption schemes

that use encryption modes such as CBC-mode or CTR-mode. By flipping certain bits

corresponding to the packet length field of an SSH packet, the receiver of the packet

can be tricked into believing that the message being received is many times bigger

than its actual size. A user would experience such attacks as connection hanging –

effectively a DoS. A cryptographic-style definition of DoS attacks was (again) first

formalised in [36] and is somewhat tailored to capture the kind of attack described

above.

Definition 24 (DOS-sfCFA).

Let fSE = (Gen,Enc,Dec) be a symmetric encryption scheme supporting fragmen-

tation. Let ENC and DEC-DOS, both initialised by INI, be the algorithms defined

in Figure 3.10. Let DENIAL be the event that SUCCESS = true after a call to

DEC-DOS. For any adversary A, we define its n-DOS-sfCFA advantage as:

Advn-dos-sfcfa
fSE (A) = Pr

[
INI, AENC(·),DEC-DOS(·) : DENIAL

]
.

The scheme fSE is said to be (η,R)-n-DOS-sfCFA secure, if for any adversary A with

resources at most R, its n-DOS-sfCFA advantage is bounded by η.

To win the DoS game, an adversary must produce a sequence of ciphertext fragments

that when concatenated is at least n bits long and deviates from the sequence of

bits produced by the encryption oracle, and where the consecutive decryption of

these fragments still causes the decryption algorithm to produce no output. The

parameter n quantifies for how long the output from the decryption algorithm can

be stalled. Hence, we are interested in achieving n-DOS-sfCFA for the smallest

possible n. Applications often implement a maximum message size to thwart DoS

attempts. Such applications can trivially satisfy this definition by simply choosing n
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alg. INI

sync = true

ie = 0

LC = []

LM = []

SF = ε

SD = ε

(k, σ, %)← Gen

SUCCESS = false

return

alg. ENC(M)

(C, σ′)← Enck(M,σ)

LC.append(C)

LM.append(M ‖ ¶)
ie = ie + 1

return C

alg. DEC-DOS(F )

(M,%′)← Deck(F, %)

SD = SD ‖M
if sync = true

SF = SF ‖ F
U = {l | ||(LC[0 : l]) � SF} ∪ {ie}
jd ← min (U)

if SF � ||(LC[0 : jd])

M = ε

else

M = SD % ||(LM[0 : jd − 1])

if ||(LC[0 : jd]) � SF

M = SD % ||(LM[0 : jd])

if M 6= ε

SF = ε

sync = false

else

if M = ε

SF = SF ‖ F
else

SF = ε

if sync = false and |SF| ≥ n
SUCCESS = true

return M

Figure 3.10: Algorithms for defining DOS-sfCFA advantage.

to be equal to the maximum message size. In Chapter 7, we present an encryption

scheme supporting ciphertext fragmentation, InterMAC, that substantially lowers

the smallest possible n, often far lower than any maximum message size, significantly

improving DoS security. Note that in the context of the security definition, n is

counted in bits.

3.8 A Deficient Definition of Confidentiality

The original definition of IND-sfCFA, as it appeared in [36], had a flaw, that allowed

a trivial attack to succeed with very high probability. We have replicated the original

decryption oracle in Figure 3.11. Essentially, the flaw originated from the choice of how

to handle ciphertext in the decryption algorithm that deviates from the encryption

oracle output. Boldyreva et al. adopted the choice that synchronisation should be

lost from the moment a single bit, that has not been honestly produced through

the encryption oracle, is submitted to the decryption algorithm. Unfortunately, this
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alg. sfDec(F ) from [36]

(M,%′)← Deck(F, %)

SF = SF ‖ F
SD = SD ‖M
if sync = true

while ||(LC[0 : jd]) � SF and jd < ie

jd = jd + 1

if SF � ||(LC[0 : jd])

M = ε

else

sync = false

M = SD % ||(LM[0 : jd − 1])

return M

Figure 3.11: The decryption oracle used in the deficient IND-sfCFA notion in [36].

allows for the following attack:

1. The adversary picks a uniformly random bit d and queries the bit to the

decryption oracle sfDec.

2. The adversary picks two different plaintexts m0 and m1 and queries these to

the encryption oracle LR and receives back the resulting ciphertext c that is an

encryption of mb.

3. If c[0] 6= d (i.e. the first bit of c is not equal to the bit d), then the adversary

outputs a random bit. If instead c[0] = d, then the adversary queries c[1 : |c|−1]

to the decryption oracle, receiving back a plaintext m′.

4. If m′ = m0 the adversary returns 0, and 1 otherwise.

After the decryption oracle query in step (1), the sync flag sync is set to false

in Figure 3.11 because jd = ie and the list LC is empty. On the subsequent query

in step (3), the oracle sfDec, therefore, returns the output from decrypting c, given

the guess d was correct. Step (4) will produce the correct guess of the bit b because

of correctness. Since each case in step 3 occurs with probability 1/2, the success

probability of the adversary is 1/2 + 1/4 = 3/4. Hence, the adversary’s advantage is

1/2.

The attack succeeds by cleverly abusing the internal buffering of the decryption

algorithm Dec and the decryption oracle’s handling of the dishonestly produced

ciphertext fragment. To fix this flaw, we choose to adopt a stricter interpretation
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of when the decryption oracle should go out-of-sync. In essence, we believe that

the decryption gives too much credit to an adversary that can guess a small prefix

of the “next” ciphertext fragment. We, therefore, require that out-of-sync is only

achieved if the adversary can force output from the decryption oracle, different from

the empty string after honest plaintext has been removed from the output buffer SD.

This removes the ability of the adversary to directly take advantage of the inherent

buffering between calls, without showing that it can achieve a genuine advantage.

The honest plaintext removed from the output buffer depends on how the deviation

occurs and will be either ||(LM[0 . . . jd− 1]) or ||(LM[0 . . . jd]). The latter case occurs

if ||(LC) is a (strict) prefix of SF and the former occurs if a bit is different in at least

one index in both string ||(LC) and string SF.

The new definition is more intricate than the original definition. Note, for example,

that the attack mentioned above is only mitigated if the decryption algorithm Dec

outputs an empty string ε for an incomplete message that puts the decryption oracle

ahead of the encryption oracle. This means that the current definition given for

IND-sfCFA is not necessarily the most natural definition for defining confidentiality

in the fragmentation setting.

3.9 A Critique of the Active Boundary Hiding Security Prop-
erty

The ciphertext fragmentation model uses suppression of output to capture stateful

security. This works well in theory and gives a somewhat clean model to define and

prove results in. However, does suppression necessarily reflect the real world? The

answer is (of course): not very well. It is not possible to assume that real-world

applications suppress output. Below, we discuss the consequence of this in relation

to the boundary hiding security property. Namely, in some types of application, it

is not possible to achieve the active boundary hiding notion BH-sfCFA in practice,

while it, nevertheless, might be able to be proven in theory.

Consider a service that queries a remote database with SQL commands. The remote

database will execute the query and immediately transmit the result back to the

client. In such an application, active boundary hiding is beneficial, hiding the lengths

of the commands and making traffic analysis harder. But even using the InterMAC

encryption scheme IM (presented in Chapter 7), an active attacker would be able to
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tell apart ciphertext boundaries by submitting data to the remote database byte-by-

byte and observing when the database responds. In the rest of this section, we will

refer to such applications as being reactive, i.e., reactive applications are those that

produce observable behaviour on, say, a network after decrypting a single ciphertext.

In general, to attack such a reactive application, an adversary can abuse ciphertext

fragmentation: submit ciphertext fragments byte-by-byte until a reaction is observed.

By keeping track of how many bytes have been submitted, the adversary can infer

the length of the ciphertext to which there has been a reaction. This simple, yet fully

practical, attack makes it possible for an adversary to delineate ciphertext boundaries,

apparently breaking BH-sfCFA for any encryption scheme supporting ciphertext

fragmentation. In particular, this would mean that IM presented in Chapter 7 does

not meet BH-sfCFA for such applications.

The above discussion highlights a discrepancy between theory and practice concerning

the boundary hiding security notions defined in Section 3.6. In theory, there would

not be any observable reaction to the legitimate ciphertexts used in the attack,

because the decryption oracle suppresses all in-sync decryption output. Thus IM is

BH-sfCFA secure. In reality, however, the adversary can obtain useful information

about ciphertext boundaries by simply observing the network and taking advantage

of ciphertext fragmentation. This disjunction between theory and practice seems to

be isolated to the definition of active boundary hiding, and we believe it does not

affect the usefulness of suppressing output to define other security properties such as

confidentiality modelling use-cases (e.g. data transfer over SSH).

3.10 Related Security Models

In this section, we review literature for related security models comparing them to

the ciphertext fragmentation model.

3.10.1 Stateful Symmetric Encryption

It is possible to extend the notions IND-CCA and INT-CTXT to capture replay and

reordering attacks by an adversary. This was done by Bellare et al. [20, 21]. Their

principal motivation was SSH, specifically the SSH encryption schemes that use

CBC-mode. They defined two new security notions IND-sfCCA and INT-sfCTXT,
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pioneering the in-sync/out-of-sync technique also used to define security notions in the

ciphertext fragmentation model. The new stateful security notions are constructed

in such a way that they imply their corresponding non-stateful notions. The new

notions can be seen as a precursor to the ciphertext fragmentation security notions,

and the latter are undoubtedly inspired by the former. However, Bellare et al.’s

notions only consider the atomic setting. Hence, their results can not be carried over

to the ciphertext fragmentation model.

Interestingly, Bellare et al. also proved a version of Theorem 1 for their two new

notions. That is, if a scheme meets IND-CPA and INT-sfCTXT then the scheme

also meets IND-sfCCA. Similar results have not been proven in the ciphertext

fragmentation model, but have been proven for the stream-based channel model [60],

which we discuss in Section 3.10.4.

3.10.2 Formal Security Treatment of SSH Encryption Schemes in CTR-
mode

Paterson and Watson [114] constructed an SSH inspired model and defined security

notions specifically tailored to capture security properties of SSH encryption schemes

that use CTR-mode (as implemented in OpenSSH). Their specific focus leads to a

number of differences compared to the ciphertext fragmentation model. Firstly, the

confidentiality notion [114, Definition 2] (based on the stateful confidentiality notion

by Bellare et al. described in Section 3.10.1) includes parameters specific to SSH

such as the length field, sequence number and buffer scheme. These parameters are

an embedded part of capturing the desired security properties, and as a consequence,

their model does not generalise to any other protocols than SSH. Secondly, while

the ciphertext fragmentation model allows decryption to continue after a failure,

Paterson and Watson require that all subsequent decryption calls must fail (which is

indeed the correct behaviour when modelling SSH). This is also an embedded part of

their notion of security. Finally, the ciphertext fragmentation model defines several

notions that go beyond confidentiality, the main focus of Paterson and Watson.

3.10.3 On-line Symmetric Encryption

The concept of an online symmetric encryption scheme (referred to as an online

cipher in the literature) has been an active research topic for the past 20 years. The
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first definition of an online cipher appears in work by Bellare et al. [15], that defines

the security of an online cipher to be a function that is indistinguishable from an

online random permutation. The term online refers to the fact that encryption of

the ith plaintext block must only depend on the first i plaintext blocks. This allows

an online cipher to output ciphertext prior to having made an entire pass over the

plaintext. That is, at a high level, the online setting considers a continuous plaintext

and ciphertext where each plaintext block is encrypted to a ciphertext block.

A similar concept to online ciphers, coined blockwise-adaptive attackers, were defined

in [90] and then morphed into the language of online ciphers in [63, 65, 64]. This

setting consider attackers that can adaptively inject message blocks into an encryption

process and retrieve ciphertext blocks from a partial message encryption. In these

works, it is proved that an adversary equipped with such powers renders several

encryption modes insecure in the Find-Then-Guess security model [17]. Namely, this

is shown for encryption modes CBC, GEM [51] and IACBC [91].

Boldyreva and Taesombut [38] modified the work of Bellare et al. to require constant

memory and latency, by only permitting the encryption of the ith block of plaintext

to depend on the ith plaintext block, (i − 1)th plaintext block, and the (i − 1)th

ciphertext block. In addition, they defined new notions, which they claimed to

capture the “strongest possible achievable confidentiality notion taking into account

blockwise-adaptable attackers” [38, page 3]. This work was later complemented by

Rogaway et al. [124]. They define an online cipher to be a deterministic, length-

preserving block cipher E : ({0, 1}n)+ → ({0, 1}n)+, where the ith block of ciphertext

only depends on the first i blocks of plaintext, extend the online cipher paradigm

to allow variable-length messages, and use this to construct online ciphers from

tweakable block ciphers [102]. Furthermore, [81] critiques the original security notion

of an online cipher (OAE1 in their language). Instead, they present a new security

notion (OAE2), which, in their words, gives “a more faithful delivery on the promise

of achieving best-possible security for an online authenticated symmetric encryption

scheme”. [81, Figure 1] compares OAE1 and OAE2.

Additional works [12, 11, 61, 1, 62, 10, 9, 33] developed and analysed different aspects

of online ciphers.

The ciphertext fragmentation model is distinguishable from the online cipher model

in some key areas. Firstly, the ciphertext fragmentation model only models atomic
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encryption of messages and does not give blockwise-adaptive-style powers to an

adversary. Secondly, the ciphertext fragmentation model aims to model the non-

atomic behaviour of ciphertext delivery and does this by abstracting away the specific

low-level functionality of the encryption/decryption operation; there is no assumption

of specific block-wise encryption/decryption behaviour. This seeks to reflect how

many transport layers in secure communications protocols operate. Thirdly, while

there exist many works on online ciphers dealing with passive adversaries, there is

not much work considering active attackers. The ciphertext fragmentation model

emphasises the existence of active adversaries. Finally, the ciphertext fragmentation

model defines a number of additional security notions that are not defined in the

online cipher setting. Namely, the boundary hiding notion and the denial-of-service

security notion.

3.10.4 Stream-based Channel

In [60] Fischlin et al. construct a model that attempts to simulate the distinctive

behaviour of streaming APIs. Such APIs do not receive discrete plaintexts or

ciphertexts, but instead receive plaintext/ciphertext fragments (in the same way as

we define ciphertext fragments in the ciphertext fragmentation model). In addition,

the sending side may arbitrarily buffer input, only forwarding at its discretion. This

sort of behaviour is distinctive of, for example, TCP-like socket interfaces, the sort

of interfaces offered by e.g. TLS and QUIC [86].

To model streaming APIs, Fischlin et al. define a model capturing a stream-based

channel which is composed of three algorithms: an init algorithm init, a send algorithm

send and a receive algorithm recv. The send algorithm can be viewed as the encryption

algorithm, and the receive algorithm can be viewed as the decryption algorithm. The

send algorithm is special in that it allows input of plaintexts but does not necessarily

output any ciphertext. Instead, output is controlled by a flush flag (a parameter to

the send algorithm). This achieves two goals: it views plaintexts as units in a stream

and not atomic/discrete units, and allows the sending algorithm send to process data

at its discretion.

The receive algorithm is similar in nature to the decryption algorithm in the ciphertext

fragmentation model and must handle fragments that do not necessarily represent

an atomic plaintext. As with the input to the send algorithm, Fischlin et al. view
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the input to the receive algorithm as a stream of ciphertexts. The special features of

the send and receive algorithms are nicely illustrated in [60, Figure 2].

The stream-based channel model in [60] has striking similarities to the ciphertext

fragmentation model but with some essential differences. Firstly, the ciphertext

fragmentation model views plaintexts as discrete units, and the encryption algorithm

does not have any discretion on when to output ciphertext; this must happen after

processing the plaintext input. This difference, of course, separates the security

results obtained in each model. Both models, however, define analogous notions for

confidentiality and authenticity. This leads us to the second major difference between

the two models. The ciphertext fragmentation model defines several security notions

that go beyond confidentiality and authenticity. It is possible, however, that future

work would define similar notions for the stream-based channel model.

Bhargavan et al. [32] also define stream-based security notions that are similar in

nature to Fischlin et al.’s security notions, capturing security properties as types in

a programming language. An adversary is modelled as another program interacting

with the code for the send and receive algorithms. This work was extended in [56],

to capture security properties of TLS 1.3 [119]. This work aimed to make formal

analysis techniques easier to apply and presents a direction that might be beneficial

in the future as formal analysis methods continue to develop.
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Chapter 4

The SSH Ecosystem on the Inter-
net

In this chapter, we present a study of the SSH ecosystem on the Internet. We focus

on the mix of different SSH implementations, versions supported and preferred SSH

encryption scheme. Our search is entirely restricted to SSH servers with a public IP

address reachable on the Internet.

4.1 Ethical Considerations

When performing Internet-wide scanning it is practically impossible to request

permission from all owners of the IP addresses scanned. One noticeable ethical risk of

doing Internet-wide scanning is that our scan risks slow down, or worse, bring down,

the target system. Simultaneously, there is also the risk of decreasing performance of

the local system performance the scan, which might be problematic if you are using

e.g. the university Internet connection. Another noticeable risk is the risk of bad

sentiment towards the entity from which the scan originates.

We were performing our scans from a host located on the Royal Holloway, University

of London, network. Taking the above risks into account, we (lead by Martin Albrecht)

obtained official approval from the IT/IT-security department before commencing

our scans. To reduce the risk of slowing down target and source systems, we limited

the number of packets to 10000 / second.

4.2 Data Set

Our data set consists of data collected from three active scans we ran on the entire

IPv4-address-space using ZGrab/ZMap [57]. For every reachable IP, we attempted to
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Scan SSH server count SSH servers with scheme data count

scan 2015-12 17,747,039 17,697,767
scan 2016-01 17,194,797 17,146,588
scan 2019-11 14,762,396 14,718,379

Table 4.1: The second column displays the number of SSH servers found in each
scan. The third column displays the number of SSH servers found in each scan for
which the supported SSH encryption schemes could also be collected.

establish an SSH connection on port 22 (the default SSH port). If an SSH server was

listening on port 22, we collected metadata from the initial key establishment and

terminated the connection. The metadata collected comprised of the server banner,

containing information about the software and version of the SSH server, as well as

SSH encryption schemes offered by the server. We count a server as an SSH server if

we were able to collect the banner.

The scans were conducted from November 11, 2015, to December 1, 2015, from

January 22, 2016, to January 27, 2016, and from November 4, 2019, to November

13, 2019, henceforth referred to as the 2015 scan, 2016 scan and the 2019 scan,

respectively. We found about 224 (approximately 16 million) servers in the first

two scans and about two million fewer servers in the last scan. For some servers

indicating SSH support, the connection terminated prematurely. This was either

due to a connection timeout or an error during the handshake. Table 4.1 shows the

number of servers for which we were able to collect the SSH banner, and the number

of servers where the supported SSH encryption schemes could also be determined.

It is important to note that our data collected does not necessarily accurately reflect

the actual SSH encryption scheme negotiated at the end of the key establishment or

the software used by the SSH server. In SSH, SSH encryption schemes are negotiated

based on the preferences of the client, not the server: the first option from the client’s

list that is also on the server’s list is used. Hence, similarly to recent studies of

algorithm deployment in TLS (e.g. [97]), it is difficult to establish what schemes are

actually used to protect traffic in flight, because only servers and their preferences

can be easily queried. In addition, servers might be listening on other ports than 22

as a protection measure. Still, the data presented in this chapter should give a rough

estimation of configurations in the wild since the most prominent servers — OpenSSH

and Dropbear — share code and default configurations between server and client.
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The server software is determined by an initial banner that is sent by the server.

However, this banner can easily be modified by the server administrator without any

available method that can be used to verify its correctness. The server banner is

regularly modified to reflect the context in which the server is used or to hide which

software the server is using. In Section 4.6.4, we will report on servers reporting

AWS SFTP 1.0 in the banner, which may be a case of the former. In Section 4.6.3,

we will report on servers reporting XXXX in the banner, which may be a case of the

latter.

4.3 SSH Deployment Statistics

In this section, we report on SSH deployment statistics, focussing on the mix of

different SSH implementations and versions supported by SSH servers.

4.3.1 SSH Implementations and Versions Statistics in the 2019 Scan

As Table 4.2 shows, amongst those servers our 2019 scan identified, those self-

reporting as OpenSSH dominate, with version 7.4 (OpenSSH 7.4 ) being the most

popular version. The most popular non-OpenSSH server is Dropbear running version

2016.74 (dropbear 2016.74 ). Overall, the landscape is dominated by OpenSSH with

approximately 86% in the 2019 scan reported as some version of OpenSSH. In

contrast, the second largest software family, Dropbear, makes up approximately 7%

of the total number of servers. There is a long tail of servers reporting as software

not belonging to the OpenSSH or Dropbear families. Among the top 35 servers these

are Cisco-1.25, ROSSSH, XXXX and AWS SFTP 1.0. We investigate these families

further in Section 4.6.

A total of 111,635 unique implementation identifiers were reported by all servers

in the 2019 scan. 99,057 identifiers were only reported once, which amounts to

approximately 89% of all identifiers. Only 426 identifiers were reported more than

100 times, approximately 3.5% of all identifiers.
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software scan 2019–11 scan 2016–01 scan 2015–12

OpenSSH 7.4 2,847,400 (19.3%) 0 ( 0.0%) 0 ( 0.0%)
OpenSSH 7.2p2 1,921,416 (13.1%) 0 ( 0.0%) 0 ( 0.0%)
OpenSSH 5.3 1,714,255 (11.6%) 2,108,738 (12.3%) 2,133,772 (12.0%)

OpenSSH 7.6p1 1,545,127 (10.5%) 0 ( 0.0%) 0 ( 0.0%)
OpenSSH 7.4p1 896,419 ( 6.1%) 0 ( 0.0%) 0 ( 0.0%)

OpenSSH 6.6.1p1 646,817 ( 4.4%) 1,198,987 ( 7.0%) 1,124,914 ( 6.3%)
OpenSSH 6.7p1 544,952 ( 3.7%) 261,867 ( 1.5%) 21,3843 ( 1.2%)
OpenSSH 6.6.1 490,104 ( 3.3%) 338,787 ( 2.0%) 252,856 ( 1.4%)

dropbear 2016.74 310,760 ( 2.1%) 0 ( 0.0%) 0 ( 0.0%)
OpenSSH 7.5 273,757 ( 1.9%) 0 ( 0.0%) 0 ( 0.0%)
Cisco-1.25 232,989 ( 1.6%) 0 ( 0.0%) 0 ( 0.0%)

OpenSSH 7.9p1 186,151 ( 1.3%) 0 ( 0.0%) 0 ( 0.0%)
OpenSSH 6.0p1 178,902 ( 1.2%) 554,295 ( 3.2%) 573,634 ( 3.2%)

dropbear 2015.67 152,645 ( 1.0%) 35,989 ( 0.2%) 30,277 ( 0.2%)
OpenSSH 4.3 150,614 ( 1.0%) 1,716 ( <0.1%) 1,607 ( <0.1%)

dropbear 147,936 ( 1.0%) 11,369 ( 0.1%) 11,121 ( 0.1%)
ROSSSH 142,973 ( 1.0%) 345,916 ( 2.0%) 333,992 ( 1.9%)

OpenSSH 8.0 113,282 ( 0.8%) 0 ( 0.0%) 0 ( 0.0%)
OpenSSH 7.9 102,687 ( 0.7%) 0 ( 0.0%) 0 ( 0.0%)

OpenSSH 5.9p1 96,510 ( 0.7%) 467,899 ( 2.7%) 500,975 ( 2.8%)
dropbear 0.46 90,040 ( 0.6%) 301,913 ( 1.8%) 335,425 ( 1.9%)
OpenSSH 6.4 65,431 ( 0.4%) 78,040 ( 0.5%) 79,468 ( 0.4%)
OpenSSH 7.2 62,911 ( 0.4%) 0 ( 0.0%) 0 ( 0.0%)

OpenSSH 5.5p1 56,917 ( 0.4%) 262,367 ( 1.5%) 272,990 ( 1.5%)
OpenSSH 5.1 53,741 ( 0.4%) 86,338 ( 0.5%) 44,170 ( 0.2%)

XXXX 51,708 ( 0.4%) 36,654 ( 0.2%) 35,857 ( 0.2%)
OpenSSH 7.8 48,860 ( 0.3%) 0 ( 0.0%) 0 ( 0.0%)
OpenSSH 6.2 47,204 ( 0.3%) 255,088 ( 1.5%) 288,710 ( 1.6%)

dropbear 2017.75 42,978 ( 0.3%) 0 ( 0.0%) 0 ( 0.0%)
dropbear 2014.63 41,740 ( 0.3%) 422,764 ( 2.5%) 197,353 ( 1.1%)

OpenSSH 7.6 38,780 ( 0.3%) 0 ( 0.0%) 0 ( 0.0%)
OpenSSH 5.8 38,558 ( 0.3%) 88,258 ( 0.5%) 89,144 ( 0.5%)
AWS SFTP 1.0 38,539 ( 0.3%) 0 ( 0.0%) 0 ( 0.0%)

dropbear 2012.55 32,756 ( 0.2%) 82,920 ( 0.5%) 86,675 ( 0.5%)
dropbear 0.50 30,750 ( 0.2%) 41,222 ( 0.2%) 44,107 ( 0.2%)

Table 4.2: Deployment statistics for SSH servers in 2015, 2016 and 2019 scans.

4.3.2 Evolution in SSH Implementations and Versions

When only considering the 2016 and 2015 scans, the picture changes completely

compared to Section 4.3.1. As Table 4.3 shows, amongst those servers our scan

identified, those self-reporting as dropbear 2014.66 dominate, with OpenSSH 5.3

being the second most popular. Overall, the landscape is dominated by OpenSSH

and Dropbear servers, with ROSSSH being the only noticeable server in the top 35

not belonging to either family. Overall, 56.11% (resp. 57.97%) of all servers reported

as some version of Dropbear and 39.22% (resp. 37.17%) as some version of OpenSSH

in the 2016 (resp. 2015) scan. In both scans, less than 5% of servers reported as

something other than Dropbear or OpenSSH. This number is up in the 2019 scan to

7% overall. In 2019, the most popular Dropbear server is dropbear 2016.74, while

there are no servers self-reporting as dropbear 2014.66.
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software scan 2016–01 scan 2015–12

dropbear 2014.66 7,229,491 (42.0%) 8,334,758 (47.0%)
OpenSSH 5.3 2,108,738 (12.3%) 2,133,772 (12.0%)

OpenSSH 6.6.1p1 1,198,987 ( 7.0%) 1,124,914 ( 6.3%)
OpenSSH 6.0p1 554,295 ( 3.2%) 573,634 ( 3.2%)
OpenSSH 5.9p1 467,899 ( 2.7%) 500,975 ( 2.8%)

dropbear 2014.63 422,764 ( 2.5%) 197,353 ( 1.1%)
dropbear 0.51 403,923 ( 2.3%) 434,839 ( 2.5%)

dropbear 2011.54 383,575 ( 2.2%) 64,666 ( 0.4%)
ROSSSH 345,916 ( 2.0%) 333,992 ( 1.9%)

OpenSSH 6.6.1 338,787 ( 2.0%) 252,856 ( 1.4%)
dropbear 0.46 301,913 ( 1.8%) 335,425 ( 1.9%)
OpenSSH 5.5p1 262,367 ( 1.5%) 272,990 ( 1.5%)
OpenSSH 6.7p1 261,867 ( 1.5%) 213,843 ( 1.2%)

OpenSSH 6.2 255,088 ( 1.5%) 288,710 ( 1.6%)
dropbear 2013.58 236,409 ( 1.4%) 249,284 ( 1.4%)

dropbear 0.53 217,970 ( 1.3%) 213,670 ( 1.2%)
dropbear 0.52 132,668 ( 0.8%) 136,196 ( 0.8%)

OpenSSH 110,602 ( 0.6%) 108,520 ( 0.6%)
OpenSSH 5.8 88,258 ( 0.5%) 89,144 ( 0.5%)
OpenSSH 5.1 86,338 ( 0.5%) 44,170 ( 0.2%)

OpenSSH 5.3p1 84,559 ( 0.5%) 89,780 ( 0.5%)
OpenSSH 7.1 83,793 ( 0.5%) 73,193 ( 0.4%)

dropbear 2012.55 82,920 ( 0.5%) 86,675 ( 0.5%)
ARRIS 0.50 81,744 ( 0.5%) 156,489 ( 0.9%)

OpenSSH 5.1p1 80,207 ( 0.5%) 83,964 ( 0.5%)
OpenSSH 6.4 78,040 ( 0.5%) 79,468 ( 0.4%)

OpenSSH 6.6.1 hpn13v11 60,696 ( 0.4%) 55139 ( 0.3%)
OpenSSH 5.9 56,268 ( 0.3%) 58,614 ( 0.3%)

homepl 56,225 ( 0.3%) 58,359 ( 0.3%)
OpenSSH 5.2 50,136 ( 0.3%) 53,199 ( 0.3%)

RomSShell 4.31 42,298 ( 0.2%) 43,890 ( 0.2%)
dropbear 0.50 41,222 ( 0.2%) 44,107 ( 0.2%)

OpenSSH 6.6 41,024 ( 0.2%) 39,573 ( 0.2%)
OpenSSH 6.9p1 39,909 ( 0.2%) 22,218 ( 0.1%)

lancom 39,639 ( 0.2%) 39,661 ( 0.2%)

Table 4.3: Deployment statistics for SSH servers in 2016 and 2015 scans.

4.4 SSH Encryption Scheme Statistics

In this section, we report on SSH deployment statistics, focussing on the SSH

encryption schemes preferred by SSH servers.

4.4.1 Default SSH Encryption Schemes Preferences

To negotiate an SSH encryption scheme, the client and server each exchange two

lists of algorithms: a list of symmetric encryption algorithms and a list of message

authentication code algorithms. The algorithm order in each list matters: algorithms

appear in descending order of preference, the first algorithm being the most preferred.

As mentioned earlier, the client decides which specific algorithms are selected.
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SSH software normally comes with predefined lists of algorithms that the client and

server use. However, the lists can be modified locally. Hence, the client and server

lists might differ even when the client and server use the same software and software

version.

OpenSSH

The current default list of symmetric encryption schemes and message authentication

codes in OpenSSH (as of version 8.1) is the following for both client and server:

Symmetric encryption algorithms: {"chacha20-poly1305@openssh.com",
"aes128-ctr","aes192-ctr","aes256-ctr","aes128-gcm@openssh.com",

"aes256-gcm@openssh.com"}

MAC algorithms: {"umac-64-etm@openssh.com",
"umac-128-etm@openssh.com","hmac-sha2-256-etm@openssh.com",

"hmac-sha2-512-etm@openssh.com","hmac-sha1-etm@openssh.com",

"umac-64@openssh.com","umac-128@openssh.com","hmac-sha2-256",

"hmac-sha2-512","hmac-sha1"}

OpenSSH has seen a steady trend of deprecating and removing support for older

algorithms and, at the same time, implementing support for newer and more modern

algorithms. For example, of 16 algorithms in the lists above, 10 algorithms are

OpenSSH-specific algorithms (indicated by the suffix @openssh.com). In addition,

OpenSSH strongly favours Encrypt-then-MAC SSH encryption schemes over the

standard SSH option of Encrypt-and-MAC.

Dropbear

The current default list in Dropbear (as of version 2019.78) is the following for both

client and server:

Symmetric encryption algorithms: {"aes128-ctr","aes192-ctr","aes256-ctr",
"twofish256-ctr","twofish128-ctr","aes128-cbc","aes256-cbc","twofish256-cbc",

"twofish128-cbc","3des-ctr","3des-cbc","blowfish-cbc"}

MAC algorithms : {"hmac-sha1-96","hmac-sha1","hmac-sha2-256",
"hmac-sha2-512","hmac-md5"}
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Twofish algorithms must be enabled at compile-time, but when enabled, they enter

the list at the preference shown above. Dropbear has not had the same drive

towards newer cryptographic algorithms as OpenSSH and has stayed with originally

recommended algorithms. Dropbear does recommend CTR-mode over CBC-mode,

which, considering later chapters in this thesis, is a good choice (cf. Chapter 5). An

option to disable CBC-mode ciphers was added in Dropbear version 2015.67 (released

28/1/2015).

4.4.2 SSH Encryption Scheme Diversity

We show the preferred combinations of encryption and MAC algorithms found in our

third (November 2019) scan for all OpenSSH servers, all Dropbear servers, and all

servers overall, in Table 4.4, Table 4.5, and Table 4.6, respectively. In total, we saw

253 different combinations as first preference at one or more SSH servers and 178

different combinations for OpenSSH. Of course, many of these combinations are used

by tiny numbers of servers, but it is still noteworthy that there is so much diversity

in the algorithm combinations for SSH. These numbers have increased compared to

the 2016 scan where we only saw 199 different combinations as first preference overall

and 155 combinations for OpenSSH specifically. The Dropbear family contained

the next-most different combinations, 36, almost five times less than the OpenSSH

family. However, for Dropbear, the number of combinations is also up compared to

the 2016 scan where we only saw a total of 16 different combinations.

4.4.3 Evolution in SSH Encryption Scheme Preferences

In Table 4.7, we show the evolution in preferred SSH encryption schemes between

the 2016 and 2019 scan for the servers self-reporting as belonging to the OpenSSH

family. The most popular SSH encryption scheme is SSH-ChaCha20-Poly1305 making

up 57.8% of preferred schemes over all OpenSSH servers. This is in stark contrast to

2016, were the number of OpenSSH servers preferring SSH-ChaCha20-Poly1305 was

only a tiny 1.7%.

Likewise, there have been a shift in the preferred SSH encryption scheme for servers

self-reporting as belonging to the Dropbear family. Table 4.8 shows that the shift is

mainly in diversity. In 2016, a large majority of Dropbear servers preferred the SSH

encryption scheme SSH-AES128-CTR-HMAC-SHA1-96 (90.4%), while in 2019 there
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encryption and mac algorithm count

chacha20-poly1305@ + umac-64-etm@ 7,369,760 (57.8%)
aes128-ctr + hmac-md5 2,088,201 (16.4%)
aes128-ctr + hmac-md5-etm@ 1,216,840 ( 9.5%)
aes128-ctr + umac-64-etm@ 705,031 ( 5.5%)
aes128-cbc + hmac-md5 274,881 ( 2.2%)
aes128-gcm@ + umac-64-etm@ 190,290 ( 1.5%)
chacha20-poly1305@ + hmac-sha2-512-etm@ 188,289 ( 1.5%)
aes256-ctr + hmac-sha2-512 163,732 ( 1.3%)
aes128-ctr + hmac-sha1 109,631 ( 0.9%)
aes128-ctr + hmac-sha2-256 91,182 ( 0.7%)
aes256-gcm@ + hmac-sha2-512-etm@ 80,317 ( 0.6%)
aes256-gcm@ + hmac-sha2-256-etm@ 50,157 ( 0.4%)
aes128-ctr + hmac-ripemd160 21,837 ( 0.2%)
aes128-cbc + hmac-sha1 16,958 ( 0.1%)
chacha20-poly1305@ + hmac-md5-etm@ 14,204 ( 0.1%)
chacha20-poly1305@ + umac-128-etm@ 13,788 ( 0.1%)
chacha20-poly1305@ + hmac-sha1 11,618 ( 0.1%)
aes128-gcm@ + hmac-sha2-512-etm@ 11,037 ( 0.1%)
aes128-cbc + hmac-sha2-512-etm@ 8,293 ( 0.1%)
aes256-ctr + hmac-sha1 7,920 ( 0.1%)

Table 4.4: Encryption and MAC algorithm preferences for OpenSSH servers in the
2019 scan. @openssh.com is abbreviated to @.

are two popular preferred SSH encryption schemes: SSH-AES128-CTR-HMAC-SHA1

(36.6%) and SSH-AES128-CTR-HMAC-SHA1-96 (33.4%). The two schemes are iden-

tical, except the latter truncates the MAC tag to 96 bits. The last entry in Table 4.8

shows that 38 Dropbear servers prefer SSH-ChaCha20-Poly1305. Since Dropbear

does not natively support this scheme, these servers are likely OpenSSH servers

self-reporting as a Dropbear server, or a local patch has been applied implementing

support for the scheme, without pushing it upstream. In total, we saw 201 servers

self-reporting as Dropbear but also preferring an SSH encryption scheme that use

neither CBC-mode or CTR-mode.

4.5 CBC-mode Vulnerabilities

In Chapter 5, we will recall the Albrecht-Paterson-Watson attack (denoted by Attack

APW in this chapter) [5], and present three new attacks against CBC-mode SSH

encryption schemes in OpenSSH. These attacks will be denoted Attack one, Attack

81



4.5 CBC-mode Vulnerabilities

encryption and mac algorithm count

aes128-ctr + hmac-sha1 383,348 (36.6%)
aes128-ctr + hmac-sha1-96 349,588 (33.4%)
aes128-ctr + hmac-sha2-256 138,552 (13.2%)
3des-cbc + hmac-sha1 117,881 (11.3%)
aes128-cbc + hmac-sha1-96 42,550 ( 4.1%)
3des-ctr + hmac-sha1 5,734 ( 0.5%)
aes128-cbc + hmac-sha1 2,781 ( 0.3%)
twofish128-cbc + hmac-sha1-96 2,232 ( 0.2%)
3des-ctr + hmac-sha1-96 1,792 ( 0.2%)
aes256-ctr + hmac-sha1 1,372 ( 0.1%)
3des-cbc + hmac-sha1-96 746 ( 0.1%)
aes256-ctr + hmac-sha1-96 333 ( <0.1%)
aes256-ctr + hmac-sha2-256 186 ( <0.1%)
aes128-ctr + hmac-sha2-256-etm@ 39 ( <0.1%)
chacha20-poly1305@ + hmac-sha1-96 38 ( <0.1%)
aes192-ctr + hmac-sha1-96 36 ( <0.1%)
aes256-ctr + hmac-sha2-256-etm@ 32 ( <0.1%)
aes192-ctr + hmac-sha2-256-etm@ 32 ( <0.1%)
aes192-ctr + hmac-sha1 30 ( <0.1%)
chacha20-poly1305@ + hmac-sha2-256 29 ( <0.1%)

Table 4.5: Encryption and MAC algorithm preferences for Dropbear servers in the
2019 scan. @openssh.com is abbreviated to @.

two and Attack three. Below, we will highlight how many servers are vulnerable

to these attacks. A server is considered to be vulnerable if the server prefers a

CBC-mode scheme, running in Encryption-and-MAC mode, and the self-reported

server software version is a version for which at least one of the attacks are applicable.

4.5.1 OpenSSH

Referring forward to Chapter 5, we list the vulnerable OpenSSH software versions

for which each attack is applicable:

Attack APW: All OpenSSH versions up to, and including, version 5.1.

Attack one: OpenSSH versions 5.2-5.9, 6.0-6.9 and 7.0-7.4.

Attack two: OpenSSH versions 5.2-5.9, 6.0-6.9 and 7.0-7.2.

Attack three: OpenSSH versions 7.3-7.9 and 8.0-current.

It is apparent, that no matter what version of OpenSSH preferring a CBC-mode
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encryption and mac algorithm count

chacha20-poly1305@ + umac-64-etm@ 7,505,362 (51.0%)
aes128-ctr + hmac-md5 2,125,031 (14.4%)
aes128-ctr + hmac-md5-etm@ 1,221,387 ( 8.3%)
aes128-ctr + hmac-sha1 739,385 ( 5.0%)
aes128-ctr + umac-64-etm@ 705,261 ( 4.8%)
aes128-ctr + hmac-sha1-96 371,891 ( 2.5%)
aes128-cbc + hmac-md5 333,974 ( 2.3%)
aes128-ctr + hmac-sha2-256 268,679 ( 1.8%)
aes128-gcm@ + umac-64-etm@ 190,326 ( 1.3%)
aes128-cbc + hmac-sha1 189,279 ( 1.3%)
chacha20-poly1305@ + hmac-sha2-512-etm@ 188,364 ( 1.3%)
3des-cbc + hmac-sha1 168,515 ( 1.1%)
aes256-ctr + hmac-sha2-512 167,549 ( 1.1%)
aes256-gcm@ + hmac-sha2-512-etm@ 80,328 ( 0.5%)
aes128-cbc + hmac-sha1-96 50,847 ( 0.3%)
aes256-gcm@ + hmac-sha2-256-etm@ 50,173 ( 0.3%)
aes256-ctr + hmac-sha2-256 43,641 ( 0.3%)
aes256-ctr + hmac-sha1 23,307 ( 0.2%)
aes128-ctr + hmac-ripemd160 21,839 ( 0.1%)
aes192-cbc + hmac-sha1 19,547 ( 0.1%)

Table 4.6: Encryption and MAC algorithm preferences for all servers in the 2019
scan. @openssh.com is abbreviated to @.

scheme is vulnerable to at least one of the attacks. A total of 333,376 OpenSSH

servers prefer a CBC-mode scheme, amounting to 2.6% of all OpenSSH servers. All

these servers are likely to be vulnerable to one of the attacks presented in Chapter 5.

Table 4.9 shows the number of vulnerable OpenSSH servers found in the 2019 and

2016 scans, divided into the different type of attacks.

4.5.2 Dropbear

Dropbear did not implement a counter-measure to the CBC-mode attack of [5].

Instead, dropbear 0.52 (released 12/11/2008) added support for CTR-mode and

made it the default. Hence, any Dropbear server preferring CBC-mode is vulnerable

to a variant of the attack from [5] (described in Section 5.1.1). This includes any

version of Dropbear prior to version 0.52.

Table 4.10 shows the number of vulnerable Dropbear servers in the 2016 and 2019

scans. We found substantially fewer vulnerable servers in the 2016 scan compared
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encryption and mac algorithm scan 2019–11 scan 2016–01

chacha20-poly1305@ + umac-64-etm@ 7,369,760 (57.8%) 115,526 ( 1.7%)
aes128-ctr + hmac-md5 2,088,201 (16.4%) 3,877,790 (57.7%)

aes128-ctr + hmac-md5-etm@ 1,216,840 ( 9.5%) 2,010,936 (29.9%)
aes128-ctr + umac-64-etm@ 705,031 ( 5.5%) 331,014 ( 4.9%)

aes128-cbc + hmac-md5 274,881 ( 2.2%) 161,624 ( 2.4%)
aes128-gcm@ + umac-64-etm@ 190,290 ( 1.5%) 110 ( 0.0%)

chacha20-poly1305@ + hmac-sha2-512-etm@ 188,289 ( 1.5%) 8179 ( 0.1%)
aes256-ctr + hmac-sha2-512 163,732 ( 1.3%) 17,897 ( 0.3%)

aes128-ctr + hmac-sha1 109,631 ( 0.9%) 68,027 ( 1.0%)
aes128-ctr + hmac-sha2-256 91,182 ( 0.7%) 7,773 ( 0.1%)

aes256-gcm@ + hmac-sha2-512-etm@ 80,317 ( 0.6%) 28,019 ( 0.4%)
aes256-gcm@ + hmac-sha2-256-etm@ 50,157 ( 0.4%) 5 ( <0.1%)

aes128-ctr + hmac-ripemd160 21,837 ( 0.2%) 10621 ( 0.2%)
aes128-cbc + hmac-sha1 16958 ( 0.1%) 11082 ( 0.2%)

chacha20-poly1305@ + hmac-md5-etm@ 14204 ( 0.1%) 185 ( <0.1%)

Table 4.7: Comparison of preferred encryption and MAC algorithms for OpenSSH
servers, between the 2016 and 2019 scans. @openssh.com abreviated to @.

to the 2019 scan. However, we also found significantly more servers in the 2016

scan. Taking this into account, we found that 15.8% and 8.4% of the Dropbear

servers in the 2019 and 2016 scans, respectively, were vulnerable. Hence, we found

proportionally more vulnerable servers in 2019 than in 2016.

4.6 Less Frequent SSH Software Identifiers

In this section, we explore some of the less popular SSH software options discov-

ered in the 2019 scan. Specifically, we investigate Cisco, ROSSSH, XXXX and

AWS SFTP 1.0. In turns out that 3 out 4 of these are likely software derived from

either OpenSSH or Dropbear.

4.6.1 Cisco

Cisco SSH software is part of the Cisco IOS (Internetwork Operating System), used

on many Cisco routers and switches.1

A total of 232,989 and 10,301 servers self-reported as Cisco-1.25 or Cisco-2.0,

respectively. A total of 132,164 servers accept SSH protocol version 1 connections.

Of these servers, 126,036 support SSH protocol version 1.9, which is a generally

accepted method to indicate that the server supports both SSH protocol versions 1

1https://www.cisco.com/c/en_uk/products/ios-nx-os-software/index.html
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encryption and mac algorithm scan 2019–11 scan 2016–01

aes128-ctr + hmac-sha1 383,348 (36.6%) 62,465 ( 0.6%)
aes128-ctr + hmac-sha1-96 349,588 (33.4%) 8,724,863 (90.4%)
aes128-ctr + hmac-sha2-256 138,552 (13.2%) 36,150 ( 0.4%)

3des-cbc + hmac-sha1 117,881 (11.3%) 321,492 ( 3.3%)
aes128-cbc + hmac-sha1-96 42,550 ( 4.1%) 478,181 ( 5.0%)

3des-ctr + hmac-sha1 5,734 ( 0.5%) 7,058 ( 0.1%)
aes128-cbc + hmac-sha1 2,781 ( 0.3%) 14,477 ( 0.2%)

twofish128-cbc + hmac-sha1-96 2,232 ( 0.2%) 0 ( 0.0%)
3des-ctr + hmac-sha1-96 1,792 ( 0.2%) 175 ( <0.1%)
aes256-ctr + hmac-sha1 1,372 ( 0.1%) 2 ( <0.1%)

3des-cbc + hmac-sha1-96 746 ( 0.1%) 2,043 ( <0.1%)
aes256-ctr + hmac-sha1-96 333 ( <0.1%) 0 ( 0.0%)
aes256-ctr + hmac-sha2-256 186 ( <0.1%) 0 ( 0.0%)

aes128-ctr + hmac-sha2-256-etm@ 39 ( <0.1%) 0 ( 0.0%)
chacha20-poly1305@ + hmac-sha1-96 38 ( <0.1%) 0 ( 0.0%)

Table 4.8: Comparison of preferred encryption and MAC algorithms for Dropbear
servers, between the 2016 and 2019 scans. @openssh.com abreviated to @.

Attack scan 2019–11 scan 2016–01

Attack APW 221,552 166,572
Attack one 80,228 Not applicable
Attack two 68,357 Not applicable

Attack three 37,435 Not applicable

Table 4.9: Number of vulnerable OpenSSH servers in the 2016 and 2019 scans for
each attack presented in Chapter 5.

and 2, while 6,128 servers only support SSH protocol version 1. 10 servers reported

that they support SSH protocol version 2.99 (which does not exist). This is likely

caused by a bug in the Cisco software.2

The vast majority of Cisco SSH servers prefer either CBC-mode or CTR-mode

SSH encryption schemes. 134,242 (54.7%) servers prefer the former, while 109,823

2https://community.cisco.com/t5/vpn-and-anyconnect/ssh-version-2-99/td-
p/1066921

Attack scan 2019–11 scan 2016–01

Attack APW 166,234 816,359

Table 4.10: Number of vulnerable Dropbear servers found in the 2016 and 2019 scans.
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(44.8%) servers prefer the latter. A subset of Cisco servers also supports the scheme

SSH-ChaCha20-Poly1305, with 970 servers having it as their preferred SSH encryption

scheme. This might indicate that the Cisco SSH server software is derived from

OpenSSH. If this is the case, more than half (54.7%) the servers self-reporting as

Cisco servers might be vulnerable to one of the attacks presented in Chapter 5.

4.6.2 ROSSSH

ROSSSH is an SSH implementation included in the RouterOS software by MikroTik.3

A small number of ROSSSH servers support OpenSSH-specific SSH encryption

schemes. However, the changelogs for RouterOS4 do not indicate that such schemes

have officially been added to ROSSSH. It is therefore unclear whether ROSSSH is

derived from OpenSSH. In addition, a few ROSSSH servers prefer the encryption

algorithms twofish-cbc and twofish256-cbc. We found zero OpenSSH servers that

prefer any of those two algorithms.

A total of 19,535 (13.6%) of ROSSSH servers prefer an SSH encryption scheme

using CBC-mode, while 1123,334 (86.2%) server prefer schemes using CTR-mode. If

ROSSSH is derived from either OpenSSH or Dropbear, this would likely leave 13.6%

of servers vulnerable to at least one attack presented in Chapter 5.

4.6.3 XXXX

Using the search query XXXX port:"22" on shodan.io, shows that XXXX SSH

servers are located in all parts of the world, with the majority of IPs originating

from India. 47,751 (88.1%) XXXX servers support the key exchange algorithm

kexguess2@matt.ucc.asn.au. This algorithm is a Dropbear-specific algorithm not offi-

cially supported by OpenSSH or any other SSH software (to the best of our knowledge).

This indicates that the SSH software on XXXX servers is derived from Dropbear.

There are 1,166 (2.1%) XXXX servers preferring CBC-mode SSH encryption schemes.

If XXXX is derived from Dropbear, it is likely these servers are vulnerable to the

CBC-mode attack against Dropbear described in Section 5.1.1.

3https://mikrotik.com/
4https://mikrotik.com/download/changelogs
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4.6.4 AWS SFTP 1.0

AWS SFTP5 is an Amazon web service that allows customers to transfer data to

and from the Amazon cloud using the SFTP protocol over SSH. All servers self-

reporting as AWS SFTP 1.0 offer the same algorithm lists, and all prefer the scheme

SSH-ChaCha20-Poly1305. None of the servers support CBC-mode SSH encryption

schemes.

The algorithm lists returned from AWS SFTP 1.0 are identical to the default lists

described in Section 4.4.1. It is therefore highly likely that AWS SFTP 1.0 SSH

software is derived from a (likely newer) OpenSSH version.

4.7 Noticeable Findings

In this section, we highlight some noticeable findings derived from the observations

presented in previous sections.

4.7.1 Age of Actively Used SSH Software

OpenSSH version 5.3 was released on 01/10/2009. Yet, in 2016 it was still the

most popular OpenSSH version, 7 years after its release. In 2019 the situation had

improved, with OpenSSH version 7.4 (released 19/12/2016) now being the most

popular version. That is, the most popular OpenSSH version in 2019 is trailing

behind the newest version by only 3 years compared to 7 years in 2016. This is a

significant improvement from a cryptographic perspective because newer versions

of OpenSSH have been deprecating cryptographically weak algorithms, introducing

modern cryptographic algorithms, and improving default settings.

dropbear 2014.66 dominated in the 2016 scan. However, this version completely

disappeared in our 2019 scan, where the Dropbear server version dropbear 2016.74

was the most popular. On the other hand, the 2019 scan found significantly fewer

Dropbear servers. The “missing” servers might still be in operation running the older

Dropbear version, but blocking inbound scan attempts.

Many operating systems ship with some version of OpenSSH (including Redhat, OSx

and OpenBSD). When one of these operating systems are installed on a server, it is

5https://aws.amazon.com/aws-transfer-family

87

https://aws.amazon.com/aws-transfer-family


4.7 Noticeable Findings

not likely that the SSH software is updated to the latest version or replaced with

other software. Hence, the server defaults to using the SSH software and version

provided by the operating system. This could be one of the main reasons why the

most popular OpenSSH version is trailing behind the newer versions. This situation

also likely arises with Dropbear. Since Dropbear has a small memory footprint, it is

a desirable candidate for SSH software in embedded devices6, and it can be hard to

upgrade software on such devices.

This can also explain the high number of old software versions reported in the 2019

scan. We found 43,470 OpenSSH servers running a version lower than 4.0. These

versions are at least 15 years old. At the same time, we found 5,904 servers running

OpenSSH version 1.x. These versions are 20 years old. The same is true for Dropbear.

We found 196,927 Dropbear servers running version 0.x. The oldest version of 0.x

(0.28) was released on 06/04/2003, and the newest version of 0.x (0.53.1) was released

on 02/03/2011 - a span of approximately 8 years. The Dropbear servers running

version 0.x are, therefore, likely to be running software versions that are in the span

of 9 to 17 years old. Generally, however, fixes and other updates could have been

backported to these old versions, without bumping the software version number.

In 2016, we also randomly sampled 2048 IPs which were reporting dropbear 2014.66 ,

respectively OpenSSH 5.3, to understand what kind of systems were running these

services. Based on nmap’s OS fingerprinting [105], we speculate that those devices

were predominately embedded systems such as routers or firewalls. We did not

investigate these systems further. On February 25, 2016 the Shodan.io search

engine reported 2,792,391 IPs reporting dropbear 2014.66 . Almost all of those IPs

belonged to an IP block owned by Comcast Cable. However, querying the network

block owned by Comcast Cable again on May 2, 2016, we only found 83,486 devices

listening on port 22. On February 4th, 2020 shodan.io reported 364,577 IPs

reporting dropbear 2016.74, with only a handful (approximately 4,000) belonging to

Comcast. Curiously, almost 100,000 of these IPs belong to Charter Communications

an American telecommunications company and the second-largest cable operator in

the United States (only surpassed by Comcast).

6A feature highlighted by the Dropbear author on https://matt.ucc.asn.au/dropbear/
dropbear.html: “A small memory footprint suitable for memory-constrained environments”
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4.7.2 SSH Encryption Schemes

Section 4.4.2 highlighted a high number of unique SSH encryption schemes preferred

by at least one SSH server. The number of unique schemes increased from 178 in 2016

to 253 in 2019, an increase of 29.6%. We consider a small amount of diversity to be

useful, but a large amount to be dangerous since it brings an increased risk of there

being obsolete or insecure options and a higher chance of there being vulnerabilities

in the complex code paths needed to support so many options.

On the positive side, the 2019 scan shows that a majority of OpenSSH servers prefer

the strong SSH encryption scheme SSH-ChaCha20-Poly1305, and many servers prefer

AE schemes or use Encrypt-then-MAC instead of the original choice of Encrypt-and-

MAC. Since OpenSSH servers make up a large percentage of the total number of

servers, these positive signs are also reflected overall. Furthermore, the top preferred

SSH encryption schemes for Dropbear servers use CTR-mode, which, in SSH, is a

considerable stronger choice than CBC-mode schemes (cf. Chapter 5).

Focusing on OpenSSH, in the 2016 scan, the SSH encryption scheme preferred on

most servers was SSH-AES128-CTR-HMAC-MD5, where AES128-CTR was made the

default encryption algorithm choice in OpenSSH version 5.2 (released 23/02/2009)

and HMAC-MD5 was made the default MAC algorithm choice in OpenSSH version

1.227 (released 05/03/2001 − the first publicly released OpenSSH version). The

default preferred MAC algorithm was first changed again in OpenSSH version 6.2

(released 22/03/2013) to the Encrypt-then-MAC algorithm version HMAC-MD5-etm.

Nonetheless, the most popular preferred SSH encryption scheme for OpenSSH was

still using HMAC-MD5 in our 2016 scan. A 3 year period was not enough for the

default algorithm change to propagate into the majority of OpenSSH servers.

OpenSSH version 6.7 (released 06/10/2014) changed the default MAC algorithm

again, this time to the algorithm UMAC-64-etm. The algorithm change was done

in a period with much internal code refactoring. This might be the reason there is

no mention of the algorithm change in the release notes published by the OpenSSH

developers. However, the change is visible in the Git commit 9235a0308 made on

7See https://github.com/openssh/openssh-portable/commit/
ec26fb166788728d7ccafe85730ccf04f3a4885b. MD5 was made the default choice
over SHA1.

8https://github.com/openssh/openssh-portable/commit/
9235a030ad1b16903fb495d81544e0f7c7449523
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20/04/2014 (6 months prior to the 6.7 release). In our 2016 scan, the number of

servers preferring an SSH encryption scheme that uses the UMAC MAC is small.

CHAHCA20-POLY1305 was made the default encryption algorithm as of OpenSSH

version 6.9 (released 01/07/2015). Unsurprisingly, this change is also not reflected

in the 2016 scan. However, the default encryption and MAC algorithm changes are

clearly visible in the 2019 scan, 4-5 years later.

It is clear from the above discussion that any change in a default algorithm (at

least for OpenSSH) takes a substantial number of years to propagate to the SSH

ecosystem. This is also reflected in the number of different OpenSSH versions still

active, some servers using versions first published 20 years ago.

4.7.3 Vulnerable Servers

The number of OpenSSH servers that are vulnerable to an attack from Chapter 5

found in the 2019 scan increased compared to the 2016 scan. This is even true if we

only focus on the APW attack. Overall, the number of vulnerable OpenSSH servers

has more than doubled in the 2019 scan compared to the 2016 scan.

For Dropbear servers, the number of vulnerable servers has decreased from 816,359

servers in the 2016 scan to 166,234 servers in the 2019 scan. But taking into account

that we found markedly less Dropbear servers in the 2019 scan compared to the

2016 scan the situation changes. In 2016, (approximately) 1 in every 12 servers was

vulnerable. In 2019, the fraction of vulnerable Dropbear servers had increased to

(approximately) 1 in every 6 servers. As with OpenSSH, this is an increase of about

100%.
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Chapter 5

Attacks on SSH’s CBC-mode

In this chapter, we present new attacks against CBC-mode SSH encryption schemes

(henceforth referred to as CBC-mode). We begin by recalling the plaintext recovery

attack on CBC-mode from [5]. We then describe a variant of the attack that applies to

Dropbear’s implementation of CBC-mode. We go on to describe the countermeasure

to the attack that was introduced in OpenSSH 5.2.1 We proceed to present three

new attacks against CBC-mode in OpenSSH. The first attack exploits a bug in the

OpenSSH source code. The second attack breaks the countermeasure implemented

against [5]. The third attack breaks the countermeasures that were implemented

against our second attack. At the end of this chapter, we discuss the impact of our

attacks.

5.1 The Albrecht-Paterson-Watson Attack

We recall the attack from [5] using its text. This attack applied to OpenSSH up to

and including version 5.1. In compliance with SSH as described in Section 2.4.2,

OpenSSH 5.1 (and earlier) uses CBC-mode with interpacket chaining and random

padding by default. OpenSSH 5.1 decrypts the first block of a BPP packet as soon

as it is received and extracts the packet length field from the corresponding plaintext

block. OpenSSH 5.1 rejects any packets whose packet length field does not satisfy

two sanity checks. The first sanity check verifies that the encoded length (measured

in bytes) in the packet length field is less than 5 or greater than 256 · 1024 = 218

(we refer to this check as the packet length check). If this check fails, an SSH error

is immediately send by the server to the client and the connection is subsequently

terminated. If the check passes, the second sanity check is performed. In this check,

the server verifies that the total number of bytes expected in the packet (excluding a

1In this chapter, we refer to OpenSSH version X as OpenSSH X.
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possible MAC field) is a multiple of the block size (we refer to this check as the block

size check). If this check fails, the connection is immediately terminated without

sending an SSH error (if one of the two sanity checks fail, a network eavesdropper

can therefore derive exactly which of the two checks that failed). If the two sanity

checks pass, the server continues to accept data on the connection until sufficient

data has arrived; here sufficiency is determined by the content of the packet length

field and the size of the MAC field. MAC verification then takes place. If the data

has been tampered with, this will fail with high probability, leading to a termination

of the connection.

We will use k to denote the key of our block cipher F having inverse F−1. We can

assume F to be fixed for the duration of a connection. We let L denote the block

size of this block cipher in bytes (so L = 8 for 3des and L = 16 for aes128). Then

CBC-mode in OpenSSH 5.1 operates as follows: given a sequence p1, p2, . . . pn of

plaintext blocks making up a packet, we have:

ci = Fk(ci−1 ⊕ pi), i = 1, 2, . . . , n,

where c0, the IV, is taken as the last block of the previous SSH BPP ciphertext.

Hence

pi = ci−1 ⊕ F−1k (ci), i = 1, 2, . . . , n.

Assume now that an attacker collects a target ciphertext block c∗i from an established

SSH connection, from some SSH BPP packet. Let c∗i−1 denote the ciphertext block

preceding the target block, and let p∗i denote the corresponding target plaintext

block. We have p∗i = c∗i−1 ⊕ F−1k (c∗i ).

The attacker now simply injects the single block c∗i as the first block of a new packet

on the SSH connection. OpenSSH 5.1 will compute as the first block of plaintext

for this new packet p′1 = IV ⊕ F−1k (c∗i ), where IV is the last ciphertext block of the

preceding BPP packet.

Combining the two preceding equations, we have:

p∗i = c∗i−1 ⊕ p′1 ⊕ IV. (5.1)

We are interested in two cases: the attacker sees either a termination of the TCP

connection over which the SSH connection is running without an SSH error message

(indicating a failure of the block size check) or the SSH connection enters a state in
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which it is waiting for more data. In both cases, p′1 must have passed the packet

length check. But this only happens if the packet length field in p′1 lies between 5

and 218, which in turn occurs only if the first 14 bits of p′1 are all zero.2 From this

information and equation (5.1), we can calculate the first 14 bits of p∗i .

To assess the success probability of this attack, we need only calculate the probability

that the packet length check passes. We may assume that cn, obtained as the last

ciphertext block of the preceding BPP packet, acts as a random IV with respect to

the block c∗i . Hence the content of the packet length field in p′1 can be regarded as

being a random 32-bit value. Since there are 218 + 1 values for which a 32-bit number

is equal or less than 218, and there are 6 values (0, 1, 2, 3, 4, 5) for which a 32-bit

number is equal or less than 5, the packet length check will pass with probability:

218 + 1− 6

232
=

1

214

(
1− 5

216

)
≈ 1

214

This attack can be extended to recover 32 bits of plaintext by counting the number

of bytes consumed by the SSH server before it terminates the connection because

of a MAC failure. In this case, the block size check must also pass. For AES, this

means we must have 4 + PL mod 16 = 0, where PL is the numeric value encoded in

the packet length field in p′i and 4 is the size of the packet length field (in bytes).

Only one of the 24 possible values of the 4 least significant bits of PL make this

equation true, namely, the value 12. The other, 14 highest-order bits of the 18 least

significant bits, can attain any of the 214 possible values. Hence, the attack’s success

probability is reduced to:

214 + 1− 1

232
=

1

218
.

5.1.1 Applying the Albrecht-Paterson-Watson attack to Dropbear

The Dropbear code for CBC-mode (in all versions of Dropbear) performs similar

sanity checking to OpenSSH 5.1, but the details are different. Assume a block size of

16 bytes (AES) and a maximum MAC tag length of 32 bytes (corresponding to using

HMAC with SHA-256 as the MAC algorithm). From Dropbear’s packet.c, we have:

255 len = buf_getint(ses.readbuf) + 4 + macsize;

2It is also possible that the packet length field is exactly equal to 218, but this is much less likely
given that IV can be treated like a random block.
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so that len is set to the content of the packet length field plus the MAC output size

plus 4. Then:

261 if ((len > RECV_MAX_PACKET_LEN) ||
262 (len < MIN_PACKET_LEN + macsize) ||
263 ((len - macsize) % blocksize != 0)) {
264 dropbear_exit("Integrity error (bad packet size %u)", len);
265 }

so that packet processing terminates immediately if len is too large, too small, or

does not satisfy the usual block size check. Here, the value of RECV MAX PACKET LEN is

set to 35,000 and MIN PACKET LEN is set to 16 by earlier #define macros. Therefore, if

len passes the checks, the most significant 16 bits of the packet length field must be

0 (otherwise len would be larger than 35’000). To determine the number of possible

values that will pass the sanity checks, we first count the number of valid values that

are greater or equal to 215. If the 16th most significant bit is set, then only 137 of the

possible values are valid. We next count the number of valid values less than 215. Of

the least significant 15 bits, the 4 lowest-order bits (assuming big-endian) must, again,

equal 12, because of the block size check. This gives 211 possible valid values that are

less than 215. In total, there are, therefore, approximately 211 + 137 ≈ 211.1 possible

values out of 232 total values that pass the sanity checks in Dropbear. Therefore, with

probability roughly 1/220.9 the sanity checks pass, the connection is not terminated,

and the attacker learns about 20 bits of plaintext. The attacker can then go on to

learn 32 bits of plaintext as in the original attack. The reason that the attack’s

success probability is lower than for OpenSSH 5.1 is that Dropbear’s length test is

more stringent by only allowing packets of length at most 35,000 bytes.

5.1.2 OpenSSH Patch against Albrecht-Paterson-Watson Attack

Starting with version 5.2, OpenSSH implements a CBC-mode-specific countermeasure

against the attack described above, as follows (from packet.c). If the packet length

field has the wrong size then a function ssh packet start discard is called:
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1720 state->packlen =
1721 PEEK_U32(sshbuf_ptr(state->incoming_packet));
1722 if (state->packlen < 1 + 4 ||
1723 state->packlen > PACKET_MAX_SIZE) {
1724 #ifdef PACKET_DEBUG
1725 fprintf(stderr, "input: \n");
1726 sshbuf_dump(state->input, stderr);
1727 fprintf(stderr, "incoming_packet: \n");
1728 sshbuf_dump(state->incoming_packet, stderr);
1729 #endif
1730 logit("Bad packet length %u.", state->packlen);
1731 return ssh_packet_start_discard(ssh, enc, mac,
1732 state->packlen, PACKET_MAX_SIZE);
1733 }

The same function is called if the block size check fails:

1749 if (need % block_size != 0) {
1750 logit("padding error: need %d block %d mod %d",
1751 need, block_size, need % block_size);
1752 return ssh_packet_start_discard(ssh, enc, mac,
1753 state->packlen, PACKET_MAX_SIZE - block_size);
1754 }

The need variable is equal to the length of the SSH packet length field (4 bytes), the

length encoded in the length field excluding the length of the block already decrypted

(16 bytes, for AES). Finally, the function is also called if the MAC check, when

eventually performed, fails:

1 if (timingsafe_bcmp(macbuf, sshbuf_ptr(state->input),
2 mac->mac_len) != 0) {
3 logit("Corrupted MAC on input.");
4 if (need > PACKET_MAX_SIZE)
5 return SSH_ERR_INTERNAL_ERROR;
6 return ssh_packet_start_discard(ssh, enc, mac,
7 state->packlen, PACKET_MAX_SIZE - need);
8 }

Calling the function ssh packet start discard causes the server to wait for a certain

number packet discard bytes:
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352 static int
353 ssh_packet_start_discard(struct ssh *ssh, struct sshenc *enc,
354 struct sshmac *mac, u_int packet_length, u_int discard)
355 {
356 struct session_state *state = ssh->state;
357 int r;
358

359 if (enc == NULL || !cipher_is_cbc(enc->cipher)
360 || (mac && mac->etm)) {
361 if ((r = sshpkt_disconnect(ssh, "Packet corrupt")) != 0)
362 return r;
363 return SSH_ERR_MAC_INVALID;
364 }
365 if (packet_length != PACKET_MAX_SIZE && mac && mac->enabled)
366 state->packet_discard_mac = mac;
367 if (sshbuf_len(state->input) >= discard &&
368 (r = ssh_packet_stop_discard(ssh)) != 0)
369 return r;
370 state->packet_discard = discard - sshbuf_len(state->input);
371 return 0;
372 }

Afterwards, once a total of PACKET MAX SIZE bytes have arrived, ssh packet stop discard

is called. This function computes a MAC over PACKET MAX SIZE bytes and then termi-

nates the connection (the MAC algorithm being the one agreed during the initial

key establishment):

327 int
328 ssh_packet_stop_discard(struct ssh *ssh)
329 {
330 struct session_state *state = ssh->state;
331 int r;
332

333 if (state->packet_discard_mac) {
334 char buf[1024];
335

336 memset(buf, ’a’, sizeof(buf));
337 while (sshbuf_len(state->incoming_packet) <
338 PACKET_MAX_SIZE)
339 if ((r = sshbuf_put(state->incoming_packet, buf,
340 sizeof(buf))) != 0)
341 return r;
342 (void) mac_compute(state->packet_discard_mac,
343 state->p_read.seqnr,
344 sshbuf_ptr(state->incoming_packet), PACKET_MAX_SIZE,
345 NULL, 0);
346 }
347 logit("Finished discarding for %.200s port %d",
348 ssh_remote_ipaddr(ssh), ssh_remote_port(ssh));
349 return SSH_ERR_MAC_INVALID;
350 }

The overall intention of the countermeasure is to mask the side-channel information

used by the attacker in the attack of [5]: now, whenever an error occurs, the imple-

mentation waits until PACKET MAX SIZE bytes have arrived and only then disconnects.

This is because of the different settings of the value of discard in the different calls
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to ssh packet start discard.

Note that a MAC over PACKET MAX SIZE bytes is eventually computed in ssh packet -

stop discard in all three cases where ssh packet start discard is called. In two of the

three cases, the function is called at the start of packet processing (due to the length

check or block size check failing); in the third case it is called only after a MAC

verification has already failed.

5.2 Timeline of New Attacks

Below we present three new attacks against CBC-mode in OpenSSH. The second

attack was the first to be discovered and reported to the OpenSSH developers on

5/5/2016. Attack one and attack three were reported on 1/8/2016. The reason

for not presenting the attacks in chronological order is because the vulnerability

allowing attack one is a logical bug. Without this bug fixed, attacks two and three,

as presented, would not work. It is possible to define variants of the two attacks that

would work without the logical bug fixed. However, the presentation of these variants

are more convoluted and less self-explanatory. By sacrificing chronologicality, we

avoid this.

All code referred to in the next three sections are from the file packet.c in the

OpenSSH source code.

5.3 First Attack on OpenSSH CBC-mode

5.3.1 Intuition

This attack exploits a bug in the OpenSSH source code. This bug makes it possible

for an adversary to learn whether the packet length / block size check failed or

whether the MAC verification failed. This is possible because the latter case will

only happen if the server receives strictly more than PACKET MAX SIZE bytes. Hence,

by sending only PACKET MAX SIZE bytes the adversary can observe if the former case

happens or not. The adversary can employ a similar attack to the APW attack

presented in Section 5.1 with this information.
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5.3.2 The Bug

The implementation of the OpenSSH patch for the Albrecht-Paterson-Watson attack

contains a logical bug that allows an attacker to mount a similar attack. The bug

was present in OpenSSH starting from version 5.2 up until, and including version 7.4.

The bug is due to a subtle error in the computation of the packet discard value.

The bug makes it possible to easily distinguish whether the sanity checks on the

packet length field, as presented in Section 5.1, failed or not, circumventing the

countermeasure.

The computation of packet discard is performed in the function ssh packet start -

discard (shown above) and computed as:

370 state->packet_discard = discard - sshbuf_len(state->input);

where discard is the last parameter passed to the function and state->input is an

internal OpenSSH buffer. This buffer contains encrypted packets and their associated

MAC tags, which the server has received but not yet decrypted and verified. When

a chunk of bytes from the buffer has been decrypted, it is immediately consumed

(i.e., deleted) from the buffer via the function sshbuf consume. The function takes as

the first input the buffer and as the second input the number of bytes to consume

(in FIFO order). In the case of CBC-mode this happens at three locations in the

code of which only two are relevant: when the packet length field is retrieved:

1715 if ((r = cipher_crypt(&state->receive_context,
1716 state->p_send.seqnr, cp, sshbuf_ptr(state->input),
1717 block_size, 0, 0)) != 0)
1718 [...]
1719 if (state->packlen < 1 + 4 ||
1720 state->packlen > PACKET_MAX_SIZE) {
1721 [...]
1722 return ssh_packet_start_discard(ssh, enc, mac,
1723 state->packlen, PACKET_MAX_SIZE);
1724 }
1725 if ((r = sshbuf_consume(state->input, block_size)) != 0)
1726 goto out;

and when the rest of the packet is decrypted:

1777 if ((r = cipher_crypt(&state->receive_context, state->p_read.seqnr,
1778 cp, sshbuf_ptr(state->input), need, aadlen, authlen)) != 0)
1779 goto out;
1780 if ((r = sshbuf_consume(state->input,
1781 aadlen + need + authlen)) != 0)
1782 goto out;
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The third “consume” occurs when the MAC verification has been passed, but this has

no relevance to the attack. Since aadlen = 0 and authlen = 0 when using CBC-mode

in OpenSSH, the total number of bytes consumed from the input buffer is block size

when the packet length has been retrieved and block size+need bytes after the packet

has been decrypted.

Now consider the three failure cases where the function ssh packet start discard is

called. We will compute the number of packet discard bytes in each failure case.

Note, no new data is inserted into the input buffer during packet decryption.

Packet length check fails: The value of the discard parameter is PACKET MAX SIZE.

The number of packet discard bytes is therefore computed as:

PACKET MAX SIZE− sshbuf len(state->input).

Block size check fails: The value of the discard parameter is

PACKET MAX SIZE − block size. The number of packet discard bytes is therefore

computed as:

PACKET MAX SIZE− block size− sshbuf len(state->input).

Since a block size number of bytes have been consumed from the input buffer

prior to the block size check, the number of discard bytes computed is the same

as when the packet length check fails.

MAC verification check fails: The value of the discard parameter is

PACKET MAX SIZE−need. The number of packet discard bytes is therefore computed

as:

PACKET MAX SIZE− need− sshbuf len(state->input).

In the case of CBC-mode need = 4 + state->packlen− block size, where packlen

is the value encoded in the 4-byte packet length field. Prior to the MAC

verification a total of block size + need bytes is consumed from the buffer

state->input. But this means that the number of packet discard bytes computed

in this failure case is 16 bytes more than in the two previous failure cases; the

initial block of bytes, of length block size, is mistakenly counted twice.

Because of the discrepancy, if either the packet length check or block size check fails,

the server waits until it has received a total of PACKET MAX SIZE bytes before returning

an error. However, in the case of a MAC verification error the server waits for a

total of PACKET MAX SIZE + block size number of bytes before it returns an error.

99



5.3 First Attack on OpenSSH CBC-mode

5.3.3 Exploiting the Bug

As in [5] (and as explained in Section 5.1), the attacker gathers any target ciphertext

block c∗i from an SSH connection and injects it so that it is interpreted at the server

as the first ciphertext block of a new SSH packet. Then the attacker sends a further

PACKET MAX SIZE− 16 bytes (for AES and, generally, 16 must be replaced by the block

size of the underlying block cipher) to the server for a total of PACKET MAX SIZE bytes

sent. There are two cases:

1. If the server replies with an error and drops the connection, it means that either

the packet length check failed or the block size check failed. For a 16-byte

block cipher (AES) and assuming the IV is uniformly random, this happens

with probability roughly 1 − 2−18 because PACKET MAX SIZE is set to 218 in the

length check and the block size check is a 4-bit condition.

2. If the server remains silent the two sanity checks must both have passed and

the MAC check must have failed, causing the server to wait for an additional

block size bytes. This case arises with probability roughly 2−18.

In the latter case, an attacker can learn the first 14 bits and the last 4 bits of the

32 most significant bits of the target plaintext with probability 2−18 using the same

method as in [5]. Note that the attack cannot be extended to recover the remaining

14 bits, as in the Albrecht-Paterson-Watson attack, because connection termination

is no longer dependent on the encoded length in the packet length field.

5.3.4 OpenSSH Patch against Attack One

OpenSSH 7.53 removes the double counting of the initial block when computing the

number of packet discard bytes after a MAC verification failure:

1845 /* Not EtM: check MAC over cleartext */
1846 if (!mac->etm && (r = mac_check(mac, state->p_read.seqnr,
1847 sshbuf_ptr(state->incoming_packet),
1848 sshbuf_len(state->incoming_packet),
1849 sshbuf_ptr(state->input), maclen)) != 0) {
1850 [...]
1851 return ssh_packet_start_discard(ssh, enc, mac,
1852 sshbuf_len(state->incoming_packet),
1853 PACKET_MAX_SIZE - need - block_size);
1854 }

3https://github.com/openssh/openssh-portable/commit/
0fb1a617a07b8df5de188dd5a0c8bf293d4bfc0e
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The change makes the total number of bytes the server waits for the same in each of

the three failure cases.

5.4 Second Attack on OpenSSH CBC-mode

5.4.1 Intuition

The second attack essentially replaces the byte-counting side-channel of [5] with a

timing side-channel. Through this timing-channel the adversary can learn whether

the packet length / block size check failed or whether the MAC verification failed.

The latter case would exhibit a slower response time that the former case. This

again allows a similar attack to that described in Section 5.3. There are some added

complexity compared to the first attack in the sense that the second batch of bytes

(PACKET MAX SIZE− 16) send must be send quickly to ensure the side-channel signal is

strong enough. The data transfer urgency is because we want to measure the MAC

processing time and a big data transfer latency would erase that signal.

5.4.2 Description

As before, the attacker gathers any target ciphertext block c∗i from an SSH connection

and injects it so that it is interpreted at the server as the first ciphertext block of

a new SSH packet. Then the attacker sends, as quickly as possible, a further

PACKET MAX SIZE− 16 bytes4 (for AES) to the server. There are two cases:

1. If either the packet length check or the block size check on the packet length field

fails, then when ssh packet start discard is called, the server performs a single

MAC computation over PACKET MAX SIZE bytes. As before, this case happens

with probability 1− 2−18 for a block cipher with a 16 byte block size (AES).

2. If both sanity checks pass, then a MAC verification over the number of bytes

encoded in the packet length field is carried out. Further, when the MAC

verification fails (with overwhelming probability), ssh packet start discard is

called. This involves a second MAC computation over PACKET MAX SIZE bytes.

This case arises with probability roughly 2−18.

4If the patch for attack one had not been applied, an attacker must send a total of
PACKET MAX SIZE + 16 bytes (for AES) to trigger the second MAC computation in the case where
the MAC verification fails.
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In the second case, an additional MAC computation is performed. Assuming that the

attacker can deliver data fast enough to the server that it does not stall while waiting

for incoming data to process, then the additional MAC computation will show up

as a small delay in the time taken at the attacker to observe an SSH connection

termination. The length of the delay is roughly proportional to the amount of data

over which the first MAC is computed, which in turn is closely related to the content

of the packet length field.

In the basic form of the attack, we assume that the packet length field is randomised,

so that with probability 1/2 the size of the packet length field is at least 217 in

the second case. (Here we rely on the IV being effectively random.) Hence, the

time difference between the first and second cases is the time needed for a MAC

computation over at least 217 bytes. For an HMAC-based MAC algorithm with a

64-byte compression function (as in MD5, SHA-1 and SHA-256), this equates to at

least 211 compression function evaluations, with each one taking a few hundred clock

cycles on a modern CPU. Thus, the time difference is on the order of a few hundred

thousand clock cycles, or a few hundred microseconds, which is easily detectable

remotely over a network. By comparison, the Lucky 13 attack [6] on SSL/TLS, of

which this attack is reminiscent, showed that it is possible to remotely measure

timing differences equating to a single compression function evaluation, albeit under

ideal network conditions. Here the timing signal is at least 211 times as big. On the

other hand, this attack assumes that reading 218 bytes from the network as requested

by ssh packet start discard is sufficiently fast to not drown this timing signal with

network jitter.

In summary, with overall probability 2−19 (probability 2−18 for the second case to

occur and probability 1/2 that the size is at least 217), the attacker sees a measurable

delay for SSH connection termination, indicating that the sanity checks have passed.

As before, this leaks 18 bits of the plaintext information to the attacker; first 14

bits and the last 4 bits of the 32 most significant bits of the target plaintext. This

basic form of the attack is already better than random guessing because it provides

confirmation of the unknown plaintext bits. Moreover, assuming the target plaintext

is sent in an identifiable ciphertext block across many connections, then the attack can

be repeated over multiple connections to increase the success probability. Section 5.7

discusses methods that can optimise this attack.

As stated earlier, attack two, as presented, would not work if the patch against

102



5.5 Third Attack on OpenSSH CBC-mode

attack one has not been applied. We did not initially uncover attack one because our

implementation of attack two, for various SSH encoding reasons, actually sent more

than PACKET MAX SIZE+16 bytes to the server, triggering the second MAC computation

in the MAC verification failure case.

5.4.3 OpenSSH Patch against Attack Two

The second attack was patched in OpenSSH version 7.3. The mitigation makes the

number of bytes passed to HMAC in ssh packet stop discard depend on the number

of bytes already processed by HMAC prior to entering this function so that the total

number of bytes processed by HMAC always adds up to (roughly) PACKET MAX SIZE:

28 static int
29 ssh_packet_start_discard(struct ssh *ssh, struct sshenc *enc,
30 struct sshmac *mac, size_t mac_already, u_int discard)
31 {
32 [...]
33 /*
34 * Record number of bytes over which the mac has already
35 * been computed in order to minimize timing attacks.
36 */
37 if (mac && mac->enabled) {
38 state->packet_discard_mac = mac;
39 state->packet_discard_mac_already = mac_already;
40 }
41 if (sshbuf_len(state->input) >= discard)
42 return ssh_packet_stop_discard(ssh);
43 state->packet_discard = discard - sshbuf_len(state->input);
44 return 0;
45 }

This patch is meant to approximately equalise the total time spent on HMAC

computations. Below we present an attack that shows this is not true if the attacker

sends bytes to the server in a clever way.

5.5 Third Attack on OpenSSH CBC-mode

5.5.1 Intuition

The third attack breaks the countermeasure against the second attack. The attack is

a slightly modified version of the second attack. The main difference between the

two attacks is how the timing is measured. In the second attack, the case where the

MAC verification failed would exhibit a slower response than the case in which the

packet length / block size check failed. In this attack, the relationship is reversed
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e.g. the case where the MAC verification failed exhibits a faster response. This

is accomplished by only sending PACKET MAX SIZE minus 1 bytes to the server in the

second batch (compared to sending PACKET MAX SIZE in the second batch in Attack

Two). This means that the server would have already computed the first MAC

computation in the case where the MAC verification failed and is waiting to compute

the second MAC verification over PACKET MAX SIZE minus the value encoded in the

packet length field bytes.

5.5.2 Description

As before, the attacker gathers any target ciphertext block c∗i from an SSH connection

and injects it so that it is interpreted at the server as the first ciphertext block of

a new SSH packet. The first 32 bits of the decryption of the target block will

be used to construct the packet length field. Then the attacker sends a further

PACKET MAX SIZE− 16− 1 bytes (for AES) to the server. The attacker now waits for δ

seconds before sending a single byte to the server. There are two cases:

1. If either the packet length check or the block size check on the packet length

field fails, then as soon as ssh packet start discard is called, it immediately

performs a single MAC computation over PACKET MAX SIZE bytes. As before, this

happens with probability 1− 2−18 for a 16-byte block cipher (AES).

2. If both sanity checks pass, then a MAC verification over the number of bytes

encoded in the packet length field is carried out. Further, when the MAC

verification fails (with overwhelming probability), ssh packet start discard is

called. This involves a second MAC computation over PACKET MAX SIZE − PL
bytes where PL denotes the length encoded in the packet length field. This

case arises with probability roughly 2−18.

In the second case, the second MAC computation is performed only after the attacker

waits δ seconds and sends the last byte. The only exception is if the packet length

field encodes PACKET MAX SIZE, which happens with probability 2−18 for a 16-byte block

size.

The attack takes the same form as attack two but with the timing delay occurring

when the MAC verification fails except when either the packet length check of block

size check fails. The timing signal is proportional to the encoded length; the larger
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the encoded length, the more significant the timing signal is. Because of the (low)

probability of having an encoding of PACKET MAX SIZE the success probability for the

attacker is 2−19, using the same arguments used to compute the attack success

probability in attack two.

The value δ is lower-bounded by the time it takes for the server to process the first

PACKET MAX SIZE− 16− 1 bytes (for AES) sent by the attacker. Choosing δ sufficiently

big, the attack is always possible to perform. Here we are only interested in knowing

that the attack is always possible, which is why have not experimentally analysed

the optimal value for δ. But setting δ to 1 second, should leave sufficient time for

the server to process the first PACKET MAX SIZE− 16− 1 bytes (for AES) sent by the

attacker. It might be possible to significantly lower δ in practice.

5.5.3 OpenSSH Patch against Attack Three

The OpenSSH developers have decided not to implement any further countermeasures.

We recommended, and still recommend, to revert the patch against attack two. Our

main reason for this recommendation is that attack three does not require an attacker

to submit bytes quickly. Hence, practically, attack three is easier to carry out than

attack two, with the potential to be applicable in a greater number of situations.

However, CBC-mode has been disabled in OpenSSH since version 6.7, and the

OpenSSH developers do not recommend enabling it.

5.6 Experimental Results

We verified the conditions of all three attacks using Paramiko [47] as the client and

sending a different amount of data depending on the attack.

For attack one, we used OpenSSH 7.3 as the server and verified that sending 218 (the

default value of PACKET MAX SIZE) bytes would not make the server stall if either the

packet length check or the block size check fails. But if the sanity checks pass, the

server would indeed stall, waiting for a further 16 bytes before proceeding.

We verified the conditions of attack two using OpenSSH version 7.2 as the server,

see Table 5.1 for a summary of the results mentioned below. In particular, we verified

that under our attack, an OpenSSH server indeed processed 218 or (approximately)
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Length check verification failed MAC verification failed

Number of MAC computations 1 2
Length of MAC input 218 bytes 218 + 217 bytes

Total time to process MAC(s) 600ms 1200ms
Total time for server to discard packet 880ms 1500ms

Table 5.1: Summary of experiments.

218 +217 bytes with HMAC if one of the sanity checks failed, or the MAC check failed,

respectively. We also performed some basic timing experiments with the following

results. If we flipped a bit in the first block of an SSH BPP packet to distort the

packet length field, it took about 600 microseconds to compute the MAC on our test

system, and we waited for 209 microseconds for additional dummy data to arrive on

a loopback device (we started timing this in ssh packet start discard). The overall

time from sanity checking the packet length field to discarding the connection was

about 880 microseconds. If we flipped a bit in a later block so that only the MAC

check fails, OpenSSH computed two MACs, which took about 1200 microseconds

on our target system. The overall time from sanity checking the length field to

discarding the packet was about 1500 microseconds. All timings were done on the

server and packets from the client were sent over loopback. Hence, these timings

reflect a best case scenario for an attacker. Given that the feasibility of timing

side-channels over networks is well established for timing signals much smaller than

this magnitude [6], we saw no need to pursue further experiments in a more realistic

network environment.

The conditions for attack three were verified using OpenSSH version 7.3 and in a

similar way to how the conditions for attack two were verified. In particular, a similar

significant timing difference was observed for attack three as was seen in attack two.

The magnitude of the difference is dependent on the length encoded in the length

field.

5.7 Extensions and Variants of Attack Two and Three

In the case of attacks two and three, if the timing difference can be measured with

higher resolution, then more bits of plaintext can be recovered, since, when both

sanity checks pass, the additional time taken to verify HMAC on the plaintext data

relates closely to the remaining unknown bits of the 32-bit packet length field, namely,
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the 14 “middle” bits located between the 14 MSBs and the 4 LSBs (in big-endian

representation). Specifically, the more significant bits of these middle bits are more

easily recovered, while, assuming HMAC with a 64-byte compression function is used,

the least 5 significant bits of these middle bits are unlikely to be recoverable; 64

bytes is 29 bits which only requires one compression function call, so there would

not be anything to time. Assuming the target plaintext is sent in an identifiable

ciphertext block across many connections, then the attack can be repeated over

multiple connections to more accurately determine the timing difference.

In another variant of the attack, we assume the attacker already knows the most

significant 14 bits of the plaintext corresponding to the packet length field in the

target ciphertext block. (This makes the attack a “partially known plaintext recovery

attack”.) This enables the attacker to wait for an IV such that the sanity checks on the

packet length field will pass; on average, this will require waiting for (approximately)

214 packets before injecting the target ciphertext block. The attacker can then

recover the 4 bits corresponding to the block size check, now with probability 2−4.

Again, the attacker can go on to recover more unknown plaintext bits with high

probability if the timing differences can be measured with higher resolution. A similar

attack is possible if the attacker knows the least significant 4 bits of the plaintext

corresponding to the packet length field in the target ciphertext block, involving

waiting for 24 packets only, but with success probability 2−14 in recovering 14 bits

of plaintext. Likewise, a variant attack is possible if the attacker knows the most

significant 14 bits and the least significant 4 bits of the 32-bit field corresponding to

the packet length field in the target ciphertext block. In all variants, the attacks can

be iterated assuming the target plaintext is sent in an identifiable ciphertext block

across many connections.

Variant attacks in which fewer bits of known plaintext are assumed and which have

lower success probability (but which also need to wait for fewer packets before

injecting the target ciphertext block) should now be self-evident. Note that the

“known bits” variants of these attacks are also possible against OpenSSH 5.1, yielding

a new variant of the attacks of [5].
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5.8 Practical Impact, Mitigations and Recommendations

The attacks presented above succeed with relatively low probability but can be

iterated to increase their success rates. They are therefore potentially serious for

any applications using SSH that automatically reconnect and retransmit sensitive

data on SSH connections. Given the widespread usage of SSH for controlling remote

access to high-security systems, we believe the attacks should be mitigated in all

SSH implementations.

The simplest mitigation is to stop using CBC-mode encryption in SSH. As our

statistics show (cf. Chapter 4), other modes that are immune to this style of attack

are widely available. Indeed, from the work of [114], we know that CTR-mode is

invulnerable to such attacks. In Chapter 6, we will prove that OpenSSH’s SSH

encryption schemes SSH-ChaCha20-Poly1305, SSH-Generic-EtM and SSH-AES-GCM

are not vulnerable either.

There is currently no patch implemented in OpenSSH (as of version 8.1) against

attack three. A best possible mitigation entails the implementation of an Initialise-

Update-Finalise (IUF) interface for the MAC operation. The Update operation

would then be invoked on plaintext every time a new chunk of ciphertext arrives,

and only one Finalise operation would be used at the very end. Note that this might

involve the Update function sometimes being called on an empty plaintext buffer, or

on a buffer that is so short that no real cryptographic operations are done. However,

this mitigation would require significant refactoring of the parts of the OpenSSH

code that process incoming packets. Furthermore, the Finalise operation (if invoked

using HMAC) triggers 1-2 compression function calls, leaving an observable residual

timing difference.

We therefore strongly recommend against the use of CBC-mode in SSH and fully

support the decision by the OpenSSH developers to disable CBC-mode by default.
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Chapter 6

Concrete Security of SSH Encryp-
tion Schemes

In this chapter, we analyse the concrete cryptographic security of various SSH

encryption schemes implemented in OpenSSH. We focus on OpenSSH because of its

rich variety of schemes and because of its widespread use in practice.

When describing an SSH encryption scheme, we abstract away the specific underlying

symmetric encryption scheme and, instead, consider different type of schemes. As a

result, the theorems presented in this chapter capture a broader set of SSH encryption

schemes than what is, in fact, available in OpenSSH.

6.1 Modelling the OpenSSH Code

The encryption and decryption processes in OpenSSH are mainly performed in func-

tions ssh packet send2 wrapped and ssh packet read poll2, respectively. These present

what is essentially a single code-path for the various supported SSH encryption

schemes. The code appears to have been developed in a step-by-step fashion as

counter-measures to the attack of [5] and extra schemes were added. This devel-

opment approach has arguably resulted in at least one potentially dangerous error

being made, concerning when the MAC is checked in the SSH encryption scheme

SSH-Generic-EtM. This is discussed in detail in Section 6.4. One contribution of this

thesis is to disentangle the various schemes in the OpenSSH code and to present

them in a clean and self-contained way, thereby rendering them amenable to formal

analysis.

In our analysis of OpenSSH’s implementation of the SSH encryption schemes, we

endeavoured to be as faithful as possible to the OpenSSH code. However, in building

our pseudo-code models, we had to make a few simplifications and modifications
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which we now describe. We assume throughout that both compression and extra

padding are disabled.1 In order to model connection tear-downs we introduce a flag

CLOSED as part of the decryption state; once it is set, the decryption algorithm

will only return the empty string. In our pseudo-code models, we append for every

full message returned by the decryption algorithm, a special end of message symbol

(¶). This is needed in the ciphertext fragmentation model to demarcate message

boundaries, but of course does not exist in the real code. Finally, we note that the

OpenSSH “error” SSH ERR MESSAGE INCOMPLETE does not result in any error

that is visible to a network-based attacker, but only serves to indicate that decryption

needs more packet data to be able to fully assemble a packet. We leave out this error

from our descriptions.

We next discuss two operations that are common for the cryptographic processing

across many types of SSH encryption schemes in OpenSSH, relating to padding

and sanity checking. We also highlight some important variables used in these

operations. Our pseudo-code for these are embedded into the descriptions of each SSH

encryption scheme that appears in the following sections (for example, in Figure 6.6

the padding code appears in lines 4-8 in algorithm ssh-fgEtM-Enc and the sanity

checking code appears in lines 11-21 in algorithm ssh-fgEtM-Dec). The padding

scheme used is the same for all the supported SSH encryption schemes, despite

SSH-ChaCha20-Poly1305 and SSH-AES-GCM not strictly requiring any padding, and

SSH-Generic-EtM possibly not needing it, depending on the specific underlying

symmetric encryption scheme negotiated for use in the SSH-Generic-EtM construction.

Padding is recommended [135, Section 6] (but not strictly required) to be random

and, in OpenSSH, is computed using the ChaCha20 stream cipher by default or by

other methods depending on configuration. For our purposes, we simply assume the

padding to be a uniformly random string of appropriate length. During our work, we

discovered two integer overflows in OpenSSH relating to the option of adding extra

padding. These could cause interoperability problems and allow padding shorter

than 4 bytes to arise, violating the requirements in RFC 4253 [135, Section 6]. We

filed a bug report for these issues.2 and they have subsequently been fixed. The

sanity checks performed on the length field when an SSH BPP packet is received are

the same for SSH-ChaCha20-Poly1305, SSH-Generic-EtM and SSH-AES-GCM. These

1An option to allow adding extra padding (implicitly capped at 255 bytes) exists in OpenSSH.
This is exclusively used for padding user passwords during authentication and is not included in our
descriptions.

2https://bugzilla.mindrot.org/show_bug.cgi?id=2566
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consist of extracting the value encoded in the length field and verifying that it is

in the range [5, 218] and that it is an integer multiple of the block size. In the

descriptions that follows, variable `packet denotes the combined length (in bytes) of

the padding length field, payload field and padding, while bsize denotes the block size

(in bytes) of the negotiated symmetric encryption scheme. If there is no well-defined

block size number, SSH generally defaults to a block size of size 8 (cf. cipher.c

file in the OpenSSH source code for a list of block sizes). The variable `packet is

extracted from the packet length field when a packet is received and denotes the

packet length (in bytes). For SSH-ChaCha20-Poly1305 the packet length cannot be

extracted directly from the SSH BPP packet, because the packet length field is

encrypted, cf. Section 6.3. In our pseudo-code, frag represents the buffer that stores

the incoming packet fragments until a whole packet has been received and can be

further processed.

In the following, when referring to a packet, we mean the SSH BPP packet consisting

of the length field, packet length field, payload and padding field. When referring to

a packet, we might mean a packet with or without its associated authentication tag.

The terminology packet fragment is defined similarly to the terminology ciphertext

fragment in the ciphertext fragmentation model.

6.2 Adversary Resources Considered

For any adversary in this chapter, we consider the following resources, or a subset of

them, depending on the adversary:

- The computation time of the adversary.

- The number of queries made by the adversary.

- The total length of the queries made by the adversary counted in bytes.

We explain the last resource in a bit more detail. If an adversary makes q queries

totalling µ bytes, µ is equal to the sum of the length (counted in bytes) of all q

queries. To distil further, if the adversary makes queries of the form (v1, v2, . . .), then

µ is equal to the sum |v1|B + |v2|B + · · · over all such queries.
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6.3 SSH-ChaCha20-Poly1305 in OpenSSH

ChaCha20 is the stream cipher defined in [28] and Poly1305MAC is the one-time MAC

defined in [113]. We define the following interfaces for ChaCha20 and Poly1305MAC:

ChaCha20 takes a 32-byte key k, a variable-length plaintext m, an 8-byte nonce

nonce and an 8-byte initial block counter block ctr and outputs an encryption

c of m. Bernstein [28] originally defined ChaCha20 to use a 12-byte nonce and

an 4-byte block counter but this was later modified in various documents spec-

ifying the combination of ChaCha20 and Poly1305MAC (see below). We write

c ← ChaCha20k(m, nonce, block ctr). Reversing the roles of m and c yields the

corresponding decryption process. Internally, ChaCha20 makes use of a fixed-output-

length pseudo-random function, the ChaCha20 block function ChaCha20-block, a

fact which we use in our proofs. The output length of ChaCha20-block is 64 bytes

long, and takes as input the key, nonce and block counter. Poly1305MAC takes a

32-byte key k and a variable-length string str and outputs a 16-byte tag τ . We write

τ ← Poly1305MACk(str).

The generic composition of ChaCha20 and Poly1305MAC is described in RFC 7539 [113]

and adapted to SSH in the RFC draft [111] (inspired by the TLS equivalent [99]))

which defines the SSH encryption scheme SSH-ChaCha20-Poly1305. In OpenSSH,

SSH-ChaCha20-Poly1305 is denoted chachapoly1305@openssh.com. The scheme produces

a 16-byte MAC tag and encrypts in 64-byte blocks. The nonce used by ChaCha20

consists of a 4-byte sequence number stored as an 8-byte type. The key used is 64

bytes.

When SSH-ChaCha20-Poly1305 is negotiated, the cryptographic processing of a packet

deviates from the process described in Section 2.4.2. First, the length field is encrypted

using ChaCha20, using the first 32 bytes of the key and the initial block counter set to

zero. Second, the remaining part of the packet is encrypted using the last 32 bytes of

the key and the initial block counter set to one. That is, two distinct instances of the

ChaCha20 algorithm are used to encrypt the two parts. In both instances, the nonce

is the SSH packet sequence number. Third, a MAC tag is computed over the entire

encrypted packet. The key used here is obtained from a call to ChaCha20 keyed with

the last 32 bytes of the key, the 4-byte sequence number (cast to an 8-byte type) as

nonce and an initial block counter value of 0, and an all-zero 32-byte plaintext. Note

that the sequence number is not in the MAC scope (formally violating Section 6.4
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Length Padding length Payload Padding

Encryption scope (k1) Encryption scope (k2)

Authentication scope

Figure 6.1: Cryptographic processing of an SSH BPP packet using the SSH encryption
scheme SSH-ChaCha20-Poly1305. k1 and k2 represent the two 32-byte keys extracted
from the 64-byte key. The size ratios between the boxes do not represent the size
ratios between fields in a SSH BPP packet in general.

in [135]) but is integrity protected implicitly through its role in deriving the MAC

key. See Figure 6.1 for an illustration of the encryption and authentication scope.

Decryption supports ciphertext fragmentation by first decrypting the length field

and checking that it satisfies the usual length requirements. Successive packet

fragments are then accumulated until the received MAC tag can be verified against

the packet. If the MAC tag is valid, the remaining portion of the packet is decrypted

and the padding removed. A detailed description of SSH-ChaCha20-Poly1305 can

be found in Figure 6.5 (at the end of this chapter). SSH-ChaCha20-Poly1305 is a

symmetric encryption scheme supporting ciphertext fragmentation with associated

key space K = B64, plaintext space M = B∗, ciphertext space C = B∗ and error set

S⊥ = {⊥SSH ERR CONN CORRUPT,⊥SSH ERR MAC INVALID}.

We are now ready to state and prove our theorems regarding the concrete security

of the SSH encryption scheme SSH-ChaCha20-Poly1305. Because the nonce used is

equal to the sequence number, we must impose the following restriction:

Rchachapoly: The adversary must make no more than 232 encryption and decryption

queries.

Theorem 4 (SSH-ChaCha20-Poly1305 is INT-sfCTF secure).

Let SSH-ChaCha20-Poly1305 be the SSH encryption scheme described in Figure 6.5.

Then for any INT-sfCTF adversary Actf , respecting restriction Rchachapoly, against

SSH-ChaCha20-Poly1305, there exists a PRF adversary Aprf against the ChaCha20

block function ChaCha20-block such that:

Advind-ctf
SSH-ChaCha20-Poly1305(Actf) ≤ AdvPRF

ChaCha20-block(Aprf) +
1

288
, (6.1)

where Aprf runs in time similar to Actf . If Actf makes qe encryption queries totalling
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µe bytes and qd decryption queries totalling µd bytes, then Aprf makes at most⌈µe
64

⌉
+ 2 · qe +

⌈µd
64

⌉
+ 2 · qd PRF queries.

Proof of Theorem 4. We prove the theorem through a sequence of games. For each

game below, let FORGE represent the event that the adversary wins according to the

win condition in Definition 21.

G0 This is the INT-sfCTF game instantiated with SSH-ChaCha20-Poly1305. Hence:

Pr
[

INI, AENC(·),DEC(·)
ctf : FORGE

]
= Pr[G0(Actf) : FORGE ] . (6.2)

G1 In the encryption algorithm ssh-ChaCha20-Poly1305-Enc, we replace calls of the

form ChaCha20k2(m, nonce, block ctr) with:

m[0 : |m|B − 1]B ⊕ S[0 : |m|B − 1]B,

where m is either (0x00)32 or packet. Similarly, in the decryption algorithm

ssh-ChaCha20-Poly1305-Dec, we replace calls of the form

ChaCha20k2(c, nonce, block ctr) with:

c[0 : |c|B − 1]B ⊕ S[0 : |c|B − 1]B,

where c is either (0x00)32 or frag[4 : 4 + `packet]. In both cases, S is defined as

the string (using the current local nonce and block counter):

F (nonce, block ctr) ‖ F (nonce, block ctr + 1)

‖ · · ·

‖ F (nonce, block ctr + blen/64c),

where F is a random function with output size 64 bytes and len is equal to

the size of m or c (counted in bytes). For any INT-sfCTF adversary Actf , we

can build a PRF adversary Aprf against ChaCha20-block. Aprf runs Actf and

simulates for it Game G0 using its own oracle to compute the calls to ChaCha20

under k2. Aprf uses bookkeeping to avoid making queries to the PRF oracle

with the same input. Aprf outputs 1 if FORGE occurs and outputs 0 otherwise.

Clearly when Aprf ’s oracle is instantiated with ChaCha20-block it perfectly

simulates Game G0 and when its oracle is instantiated with a random function

it provides Actf with a perfect simulation of Game G1. Thus:

Pr[G0(Actf) : FORGE ]− Pr[G1(Actf) : FORGE ] ≤ AdvPRF
ChaCha20-block(Aprf).

(6.3)

114



6.3 SSH-ChaCha20-Poly1305 in OpenSSH

G2 In this game, we modify how to compute and verify the MAC tag. First, we

make the definition of Poly1305MAC more explicit:

Poly1305MACkpoly
(m) = 〈Poly1305(r,m) + s mod 2128〉128, (6.4)

where kpoly = (r, s), where r and s are both of length 16 bytes. The func-

tion Poly1305 on the right-hand side is defined according to Section 2.5.1

in RFC 7539 [113] except we make the following two operations explicit:

the operation "a += s" corresponding to the addition of s and the operation

"return num_to_16_le_bytes(a)" corresponding to the modulus operation with

2128 (which simply zeroise all bits above the 128 least significant bit). Note, the

clamping of r is performed in the function Poly1305. Since s is a 128-bit string

and is chosen uniformly at random (it is the output of the random function F in

Game G2), the output from Poly1305MAC is uniformly distributed on {0, 1}128

and independent of previous outputs because the nonce is non-repeating (here

we use the that Rchachapoly is respected).

We now make a few modifications to the encryption and decryption oracles.

In the encryption oracle, we do not generate a key for Poly1305MAC. Instead,

we sample a random byte-string τ ′ of length 16 bytes and use τ ′ as the MAC

tag. In addition, we record the tuple (nonce′, τ ′, c′length ‖ c′packet) in a list L. The

first component is the nonce, the second component is the sampled MAC tag

τ ′, and the third component is the concatenation of the output from encrypting

`packet and packet. We denote these with an apostrophe to distinguish them

from the values consumed during decryption.

During decryption, we proceed in one of two possible ways:

(1) If nonce is not a first component of any element in the list L, no tag has

been generated by the encryption oracle for that nonce. We then generate

a key kpoly = (r, s) and verify the tag as in Game G1.

(2) If the nonce is a first component of an element in the list L, we can

find the corresponding tag τ ′ that has been computed over c′length ‖
c′packet. Compute `packet and τ as in Game G1. The tag τ extracted from

the assembled packet is verified by first generating r and then checking

whether:

Poly1305r(frag[0 : 4 + `packet])

= Poly1305r(c
′
length ‖ c′packet) + 〈τ〉−1 − 〈τ ′〉−1 mod 2128,

Note that through these changes, we are merely changing the way we sample
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kpoly. Specifically, we generate s implicitly by generating τ ′ instead, and we

defer the generation of the r component to the decryption stage. Since s is

identically distributed in both Game G1 and Game G2 we have:

Pr[G1(Actf) : FORGE ] = Pr[G2(Actf) : FORGE ] . (6.5)

It now remains to bound Pr[G2(Actf) : FORGE ]. The event FORGE requires

the decryption algorithm to output plaintext and this output cannot come from

decrypting in-sync packets because it will be filtered out by the decryption

oracle. It is a necessary condition for the decryption algorithm to output

plaintext that the MAC tag verifies correctly. Since the CLOSED flag will be

set as soon as one invalid packet is detected, it suffices to consider only the first

out-of-sync packet (note this packet might be received over several queries). It

follows that Pr[G2(Actf) : FORGE ] is bounded above by the probability of the

MAC tag being valid for the first out-of-sync packet.

There are two cases to consider, if no tag was computed by the encryption

oracle for the given nonce then irrespective of the packet this probability is

equal to 2−128. Otherwise, it is bounded by the almost-∆-universality of

Poly1305 which was proven in [26]. This states that for any pair of differing

strings (v, v′) and any 16-byte string z, the probability that Poly1305(r, v) =

Poly1305(r, )v′) + 〈z〉−1 mod 2128 is bounded by 8dmax(|v|B , |v′|B)/16e/2106.
Let frag[0 : 4 + `packet] be the first out-of-sync packet. Since a packet has

already been output by the encryption oracle for the given nonce frag[0 :

4 + `packet] and c′length ‖ c′packet must be different. We can therefore apply

the bound. The maximal packet length permitted by OpenSSH when using

SSH-ChaCha20-Poly1305 is 218 + 4 + 16 bytes, where the terms are the maximal

payload length (including the padding length field), the length of the packet

length field and the length of the MAC tag, respectively. Setting max(v, v′) to

the maximal packet length yields:

Pr[G2(Actf) : FORGE ] ≤ 1

288
. (6.6)

Note, the maximal payload length is not a hard upper bound in OpenSSH (or

in the SSH specification) and can be changed at compile time by modifying

the source code. Increasing the maximal payload length by a factor of 2l gives

a further security loss of l bits.

Combining (6.2), (6.3), (6.5) and (6.6) yields the advantage bound (6.1).
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Suppose Actf makes qe encryption queries totalling µe bytes and qd decryption queries

totalling µd bytes. Then Aprf makes at most
⌈µe
64

⌉
+2·qe PRF queries in all encryption

queries. The first term covers the total number of 64-byte blocks of plaintext. The

second term covers the total number of blocks of plaintext that are less than 64

bytes long (there can be at most one of these per query because the encoding adds

at most 12 bytes) and the query to generate kpoly. A more formal way to see this is

first to write: µe =
∑

i µi, where each µi is the number of bytes queried in the ith

encryption query. The number of PRF queries in each encryption query is
⌊µi
64

⌋
+ 2

because the encoding adds at most 12 bytes. Then:

qe∑
i=1

(⌊µi
64

⌋
+ 2
)
≤
⌈∑qe

i=1 µi
64

⌉
+ 2 · qe =

⌈µe
64

⌉
+ 2 · qe.

Similarly, Aprf makes at most
⌈µd
64

⌉
+ 2 · qd PRF queries in all decryption oracle

queries. It is clear that Aprf runs in time similar to Actf .

In Game G1, we not only change the way kpoly is generated by also how the plaintext

is encrypted (and subsequently decrypted). A careful analysis of the proof, will show

that the latter step is, in fact, not strictly necessary. The reason for including this in

the proof is to help the streamlined nature of the proofs appearing in this section.

Excluding the latter step would improve the tightness of the bound (6.1). Specifically,

the number of PRF queries would decrease from
⌈µe
64

⌉
+ 2 · qe +

⌈µd
64

⌉
+ 2 · qd queries

to qe + qd queries.

Theorem 5 (SSH-ChaCha20-Poly1305 is IND-sfCFA secure).

Let SSH-ChaCha20-Poly1305 be the OpenSSH encryption scheme described in Fig-

ure 6.5. Then for any IND-sfCFA adversary Asfcfa, respecting restriction Rchachapoly,

against SSH-ChaCha20-Poly1305, there exists a PRF adversary Aprf against the

ChaCha20 block function ChaCha20-block such that:

Advind-sfcfa
SSH-ChaCha20-Poly1305(Asfcfa) ≤ 2 · AdvPRF

ChaCha20-block(Aprf) +
1

287
, (6.7)

where Aprf runs in time similar to Asfcfa. If Asfcfa makes qe encryption queries

totalling µe bytes and qd decryption queries totalling µd bytes, then Aprf makes at

most
⌈ µe
2·64
⌉

+ 2 · qe +
⌈µd
64

⌉
+ 2 · qd PRF queries.

Proof of Theorem 5. We prove the theorem through a sequence of games. For each

of these games let WIN represent the event that the adversary guesses the bit b

correctly.
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G0 This is the IND-sfCFA game instantiated with SSH-ChaCha20-Poly1305. Hence:

Pr
[

INI : ALR(b,·,·),DEC(·)
sfcfa = b

]
= Pr[G0(Asfcfa) : WIN ] . (6.8)

G1 Make the same modifications that were made to define Game G1 in the proof

of Theorem 4. Also, define Aprf similarly, except Aprf outputs 1 if WIN occurs

and 0 otherwise. Using the same arguments, we have:

Pr[G0(Asfcfa) : WIN ]− Pr[G1(Asfcfa) : WIN ] ≤ AdvPRF
ChaCha20-block(Aprf). (6.9)

G2 Make the same modifications that were made to define Game G2 in the proof

of Theorem 4. Using the same arguments, we have:

Pr[G1(Asfcfa) : WIN ] = Pr[G2(Asfcfa) : WIN ] . (6.10)

G3 In this game, we further modify ssh-ChaCha20-Poly1305-Dec. Let C be the first

out-of-sync packet and i the corresponding value of the sequence number (i.e.

nonce). We can find t such that C = SF[t : t + 4 + `packet + 16 − 1]B and

C 6= LC[i]B. It is possible to discover when we are processing C using SF and

LC, and thereby identifying C in the string SF. Let B denote the boolean value

that is true if C is being processed and false otherwise.

Replace the MAC checks in Game G2 in ssh-ChaCha20-Poly1305-Dec with the

boolean value B and branch if the value is true. In addition, remove the

decryption of SF[4 : 4 + `packet], the sanity check of the padding length and

the assignment to the output buffer msg. Instead, the content of msg can be

derived using SF, LC and LM (but only as long as B is false). Note, the random

function F is no longer used in the decryption oracle.

Let BAD denote the event that B is true, and the relevant MAC check in

Game G2 did not fail for C. If BAD does not occur, Game G2 and Game G3

are identical. Hence:

Pr[G2(Asfcfa) : WIN ]− Pr[G3(Asfcfa) : WIN ] ≤ Pr[BAD] . (6.11)

If the event BAD occurs in Game G2 the decryption oracle will output an

element from the set {0, 1,¶}∗. This is exactly the event FORGE. Therefore:

Pr[BAD] ≤ Pr[G2(Asfcfa) : FORGE ] . (6.12)

A similar analysis to that in the proof of Theorem 4 yields:

Pr[G2(Asfcfa) : FORGE ] ≤ 1

288
. (6.13)

118



6.3 SSH-ChaCha20-Poly1305 in OpenSSH

G4 In this game, we set cpacket to S[0 : |m|B − 1]B instead of m⊕ S[0 : |m|B − 1]B in

the encryption oracle. Recall that the string S was introduced in Game G1 and

defined as in the proof of Theorem 4. F is a random function and called on

distinct nonces. Therefore, this does not change the distribution of the cpacket

part returned by the oracle LR. Because the decryption oracle in G3 does not

depend on F , we have:

Pr[G3(Asfcfa) : WIN ] = Pr[G4(Asfcfa) : WIN ] . (6.14)

The clength part of the output from the encryption oracle, does not depend

on the bit b (the input plaintexts have the same length and ChaCha20 is

length-regular), and since the two other parts of the output are uniformly and

independent random strings that do not depend on b either, we have:

Pr[G4(Asfcfa) : WIN ] =
1

2
. (6.15)

Combining (6.8), (6.9), (6.10), (6.11), (6.12), (6.13), (6.14) and (6.15) yields

the advantage bound (6.7).

Suppose Actf makes eq encryption queries totalling µe bytes and qd decryption queries

totalling µd bytes. Then Aprf makes at most
⌈ µe
2·64
⌉

+ 2 · qe+
⌈µd
64

⌉
+ 2 · qd PRF queries.

The computation is equal to the computation in the proof of Theorem 4, except

that the first term can be reduced by a factor 1
2 because two equal length inputs are

queried to the encryption oracle but only one is actually used.

It is clear that Aprf runs in time similar to Asfcfa.

Theorem 6 (SSH-ChaCha20-Poly1305 is BH-CPA secure).

Let SSH-ChaCha20-Poly1305 be the OpenSSH encryption scheme described in Fig-

ure 6.5. Then for any BH-CPA adversary Abhcpa, respecting restriction Rchachapoly,

against SSH-ChaCha20-Poly1305, there exist two PRF adversaries Aprf and A′prf

against the ChaCha20 block function ChaCha20-block such that:

Advbh-cpa
SSH-ChaCha20-Poly1305(Abhcpa) ≤ 2 · AdvPRF

ChaCha20-block(Aprf)

+ 2 · AdvPRF
ChaCha20-block(A′prf), (6.16)

where Aprf and A′prf runs in time similar to Abhcpa. If Abhcpa makes qe queries

totalling µe bytes, then Aprf and A′prf each make at most
⌈µe
64

⌉
+ 4 · qe PRF queries.
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Proof of Theorem 6. We prove the theorem through a sequence of games. For each

of these games let WIN represent the event that the adversary guesses the bit b

correctly.

G0 This is the BH-CPA game instantiated with SSH-ChaCha20-Poly1305. Hence:

Pr
[

INI : ALR-BH(b,·,·)
bhcpa = b

]
= Pr[G0(Abhcpa) : WIN ] . (6.17)

G1 Make the same modifications that were made to the encryption algorithm in

Game G1 in the proof of Theorem 4. Let F be the random function sampled.

Also, define Aprf similarly, except Aprf outputs 1 if WIN occurs and 0 otherwise.

Using the same arguments, we have:

Pr[G0(Abhcpa) : WIN]− Pr[G1(Abhcpa) : WIN ] ≤ AdvPRF
ChaCha20-block(Aprf).

(6.18)

G2 In this game, we replace the ChaCha20 calls that use the key k1, in the same

fashion as in Game G1. The random function used is a new function chosen

independently from the function F sampled in Game G1. Define the adversary

A′prf similar to Aprf . Using the same arguments as above we have:

Pr[G1(Abhcpa) : WIN]− Pr[G2(Abhcpa) : WIN ] ≤ AdvPRF
ChaCha20-block(A′prf).

(6.19)

G2 In this game, we do not generate a key for Poly1305MAC. Instead, we generate

the tag by sampling a random byte-string τ of length 16 bytes. Using the same

argument as in the proof of Theorem 4, it is clear that:

Pr[G2(Abhcpa) : WIN ] = Pr[G3(Abhcpa) : WIN ] . (6.20)

Since a new nonce is used in each encryption query, and cpacket and clength

are generated using two independent random functions, the output from the

encryption oracle is independent of the bit b in Game G3. Hence:

Pr[G3(Abhcpa) : WIN ] =
1

2
. (6.21)

Combining (6.17), (6.18), (6.19), (6.20) and (6.21) yields the advantage bound

(6.16).

Suppose Abhcpa makes qe encryption queries totalling µe bytes then for each call to

the encryption algorithm, Aprf and A′prf will each make at most
⌈µe
64

⌉
+ 4 · qe PRF

120



6.4 SSH-Generic-EtM in OpenSSH

queries, derived using similar arguments to the ones used in the proof of Theorem 4.

The factor four in the last term comes from the fact that both plaintext inputs to

the encryption oracles are encrypted.

Aprf and A′prf both run in time similar to Abhcpa.

6.4 SSH-Generic-EtM in OpenSSH

This SSH encryption scheme is described briefly in the PROTOCOL file3 in the

OpenSSH codebase but does not seem to be formally documented in the form of

an RFC or other appropriate standards bodies. We have therefore extracted our

description of it directly from the OpenSSH source code.

The generic Encrypt-then-MAC construction (SSH-Generic-EtM) in OpenSSH al-

lows any combination of supported encryption and MAC algorithms to be run in

Encrypt-then-MAC mode. However, we note that the actual implementation of

SSH-Generic-EtM in OpenSSH prior to version 7.3 does not implement Encrypt-then-

MAC in the expected way. While the MAC tag of a received packet is computed

before decryption commences, it is only compared to the received MAC tag after

decryption is complete, see Figure 6.2. Presumably, this resulted from implement-

ing SSH-Generic-EtM on top of the implicit Encrypt-and-MAC structuring of the

OpenSSH legacy code. As a consequence, the decryption function could produce a

plaintext-dependent error before the MAC is checked, opening the code up to attacks

involving packet manipulation. For example, suppose CBC-mode using PKCS#7 [92]

padding were to be at some point added to the roster of available encryption al-

gorithms in OpenSSH. Then the late MAC check would enable a padding oracle

style attack to be mounted. We stress, however, that at this point no attack is

known exploiting the late MAC check. This issue was fixed in OpenSSH version 7.3

(cf. Section 1.2).

It would be possible to prove SSH-Generic-EtM secure in our model assuming that any

errors thrown by the decryption algorithm can be simulated without knowledge of the

secret key (formally, by assuming the existence of an efficient keyless decryption error

simulator). But such an approach would neglect the potential vulnerabilities just

highlighted. Subsequently, the developers of OpenSSH has fixed the issue in OpenSSH

3The PROTOCOL file documents OpenSSH’s deviations and extensions to the SSH protocol as
specified in RFCs.
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1772 if (mac && mac->enabled && mac->etm) {
1773 if ((r = mac_compute(mac, state->p_read.seqnr,
1774 sshbuf_ptr(state->input), aadlen + need,
1775 macbuf, sizeof(macbuf))) != 0)
1776 goto out;
1777 }
1778 if ((r = sshbuf_reserve(state->incoming_packet, aadlen + need,
1779 &cp)) != 0)
1780 goto out;
1781 if ((r = cipher_crypt(&state->receive_context, state->p_read.seqnr, cp,
1782 sshbuf_ptr(state->input), need, aadlen, authlen)) != 0)
1783 goto out;
1784 if ((r = sshbuf_consume(state->input, aadlen + need + authlen)) != 0)
1785 goto out;
1786 /*
1787 * compute MAC over seqnr and packet,
1788 * increment sequence number for incoming packet
1789 */
1790 if (mac && mac->enabled) {
1791 if (!mac->etm)
1792 if ((r = mac_compute(mac, state->p_read.seqnr,
1793 sshbuf_ptr(state->incoming_packet),
1794 sshbuf_len(state->incoming_packet),
1795 macbuf, sizeof(macbuf))) != 0)
1796 goto out;
1797 if (timingsafe_bcmp(macbuf, sshbuf_ptr(state->input),
1798 mac->mac_len) != 0) {

Figure 6.2: The OpenSSH encryption scheme SSH-Generic-EtM prior to version
7.3 did not implement a true Encrypt-then-MAC construction. Code extracted
from source code file packet_v5_2.c of OpenSSH version 7.2. The execution flow of
SSH-Generic-EtM without errors: lines 1773-1775 computes the MAC tag over the
packet; lines 1781-1782 decrypts the packet; lines 1797-1798 verifies the MAC
tag.

version 7.3 [70]. The modified construction, SSH-fgEtM (SSH-Fixed-Generic-EtM), is

identical to SSH-Generic-EtM except that it checks the MAC before decryption. We

prove security of the modified scheme SSH-fgEtM.

SSH-fgEtM is parameterised by a symmetric encryption scheme and a message

authentication code and is negotiated in OpenSSH by negotiating a special ver-

sion of the message authentication code (the static string representing the MAC

suffixed with -etm). If a special MAC is negotiated alongside SSH-AES-GCM or

SSH-ChaCha20-Poly1305, then the Encrypt-then-MAC behaviour is disabled. The

cryptographic processing of an SSH packet using SSH-fgEtM proceeds as follows.

First, the padding length field, payload and padding length field are encrypted. Then,

a MAC tag is computed over the resulting packet prepended with the length field

and the sequence number. Hence, the OpenSSH implementation of SSH-fgEtM does

not strictly comply with Section 6.3 of [135], which mandates that the length field
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Length Padding length Payload PaddingSeq. nr.

Associated data Encryption scope

Authentication scope

Figure 6.3: Cryptographic processing of an SSH BPP packet using the SSH encryption
scheme SSH-Fixed-Generic-EtM. The size ratios between the boxes do not represent
the size ratios between fields in an SSH BPP packet in general.

be encrypted. In SSH-fgEtM, this is because the MAC tag must be verified before

decryption can commence, and the length field is the only indicator of where the

MAC tag is located in the stream of packet bytes; so, it has to appear in unencrypted

form (SSH-ChaCha20-Poly1305 circumvents this by having two different encryption

contexts, see Section 6.3). Decryption proceeds similarly to SSH-ChaCha20-Poly1305,

excluding the step that decrypts the length field. See Figure 6.3 for an illustration of

the encryption and authentication scope when using SSH-fgEtM.

To accommodate negotiation of SSH encryption schemes that uses the MAC UMAC,

we have introduced a flag use umac. This flag is false if an SSH encryption scheme

using UMAC is not negotiated and true otherwise. Note that when UMAC is

negotiated, the SSH sequence number is cast to at 64-bit type. Detailed pseudo-code

for SSH-fgEtM can be found in Figure 6.6 (at the end of this chapter). SSH-fgEtM is

a symmetric encryption scheme supporting ciphertext fragmentation with associated

key space K induced by the underlying choice of symmetric encryption scheme and

message authentication code, plaintext space M = B∗, ciphertext space C = B∗ and

error set S⊥ = {⊥SSH ERR CONN CORRUPT,⊥SSH ERR MAC INVALID}.

We are now ready to state and prove our theorems showing that SSH-fgEtM is

IND-sfCFA and INT-sfCTF secure. We use the notation SSH-fgEtM(SE,MAC) to

indicate that the algorithm pairing (SE,MAC) has been negotiated. For the proof,

we make the assumption that the tagging algorithm of the message authentication

code MAC is a PRF. To simplify our notation, the proof only covers the case where

UMAC is not negotiated. The proofs can easily be adapted to cater for UMAC:

since the nonce is derived from the SSH sequence number and hence does not repeat

(assuming the number of encryptions/decryptions are restricted appropriately), its

MAC tags will be pseudo-random and the proof will go through. Since the MAC tag

is dependent on the sequence number, and the sequence number is incremented for
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each encryption/decryption, we cannot allow calling the encryption and decryption

oracle more than 232 times. This is captured in the following restriction:

Rfgetm: The adversary must make no more than 232 encryption and decryption

queries.

In the following, bsize is the block size of SE or equal to 8 if there is no well-defined

block size of SE.

Theorem 7 (SSH-Fixed-Generic-EtM is IND-sfCFA secure).

Let SE = (Gen,Enc,Dec) be a length-preserving probabilistic symmetric encryp-

tion scheme with associated key space KSE ⊂ B∗, plaintext space MSE = B∗,

and ciphertext space C = B∗ and let MAC = (Gen,Mac) be a message authen-

tication code with key space KMAC ⊂ B∗, message space MMAC = B∗ and tag

length `tag. Let SSH-fgEtM(SE,MAC) be the SSH encryption scheme defined in Fig-

ure 6.6. Then for any IND-sfCFA adversary Asfcfa, respecting restriction Rfgetm,

against SSH-fgEtM(SE,MAC), there exists an IND-CPA adversary Acpa against SE,

a PRF adversary Aprf against Mac and an UF-CMA adversary Aufcma against MAC

such that

Advind-sfcfa
SSH-fgEtM(SE,MAC)(Asfcfa) ≤ Advind-cpa

SE (Acpa) + 2 · Advuf-cma
MAC (Aufcma)

+ 2 · AdvPRF
Mac(Aprf), (6.22)

where adversaries Acpa, Aprf and Aufcma have similar running times to Asfcfa. If

Asfcfa makes qe encryption queries totalling µe bytes and qd decryption queries, then:

Aufcma: Makes qe tagging oracle queries totalling at most µe
2 + qe · (12 + bsize) bytes,

and 1 verification oracle query.

Aprf : Makes qe PRF oracle queries.

Acpa: Makes qe encryption oracle queries totalling at most µe + qe · (4 + bsize) bytes.

If UMAC is used, the total bytes consumed by Aufcma and Aprf is increased by qe · 12

because of the inclusion of the 8-byte nonce and the cast of the sequence number to

an 8-byte type.

Proof of Theorem 7. We prove the theorem through a sequence of games. For each

of these games, let WIN represent the event that the adversary guesses the bit b

correctly.
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G0 This is the IND-sfCFA game instantiated with SSH-fgEtM(SE,MAC). Hence:

Pr
[

INI : ALR(b,·,·),DEC(·)
sfcfa = b

]
= Pr[G0(Asfcfa) : WIN ] . (6.23)

G1 In this game, we modify the decryption algorithm. Define the list LP to

contain frag[0 : 4 + `packet + `tag − 1]B at index seqnr, assigned directly before

the computation of the expected MAC tag τexpected i.e. LP[seqnr] = frag[0 :

4 + `packet + `tag − 1]. The entry LP[j − 1] contains the jth fully assembled

packet. Next, remove the computation of the expected MAC tag, and replace

the verification of the expected MAC tag against the tag contained in the

packet, with the condition:

(||(LP) � ||(LC)) ∧ (||(LP[0 : seqnr − 1]) � ||(LC)) . (6.24)

That is, line 27 through line 32 in the decryption algorithm in Figure 6.6

are removed while the condition in the if-statement on line 33 is replaced by

condition (6.24). Define τj to be the MAC tag contained in packet LP[j] and

τ jexpected the MAC tag originally computed in the decryption algorithm. Define

BAD to be the event that there exists j such that:

||(LP[0 : j]) � ||(LC) ∧ ||(LP[0 : j − 1]) � ||(LC) ∧
(
τj = τ jexpected

)
.

Note that such a j must necessarily be unique when combining the first two

conditions. We next argue that games G0 and G1 are identical until event

BAD and then proceed to show that event BAD implies a forgery in the sense

of UF-CMA.

If the condition (6.24) is false, then we have either ||(LP) � ||(LC) or ||(LP[0 :

seqnr − 1]) � ||(LC). If the former is true, then the games are clearly identical.

The latter cannot be true, because it would imply that the condition was true

in an earlier decryption algorithm call, which would set the CLOSED flag.

If the condition (6.24) is true, and τj 6= τ jexpected then the games are again

identical. In Game G0 τj 6= τ jexpected can only happen when condition (6.24) is

true because, otherwise, the computation is over in-sync packets, which would

produce the correct MAC tag. Hence, in both games, the content of the output

buffer msg is identical at any given point in time as long as BAD has not

occurred. Therefore:

Pr[G0(Asfcfa) : WIN ]− Pr[G1(Asfcfa) : WIN ] ≤ Pr[BAD] . (6.25)
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We now bound the probability of event BAD, by showing that if it occurs, it

is possible to produce a valid forgery in the sense of UF-CMA. We will analyse

this probability with respect to Game G0.

Given the adversary Asfcfa, we build an adversary Aufcma against MAC as follows:

Aufcma runs Asfcfa and simulates Game G0 but uses its own tagging oracle access

to compute tags. For each decryption query, Aufcma checks condition (6.24)

and, if true, submits

(〈seqnr〉32 ‖ 〈`packet〉32 ‖ LP[j][4 : 4 + `packet − 1], τ)

to the verification oracle, as its forgery attempt, instead of computing the tag

τ jexpected. τ is the extracted MAC tag and `packet is computed as in Game G0.

j is the unique integer such that condition (6.24) is true. We next argue that

this constitutes a valid forgery, establishing (6.25).

Because of condition (6.24), we must have either seqnr > |LC| or LP[j] 6= LC[j].

In the former case, the number of decryptions is ahead of the number of

encryptions. This means that no MAC tag can have been computed over any

prior packet together with the sequence number seqnr. If this is not the case,

LP[j] must be different from the jth encryption oracle output. Hence, in both

cases, as long as BAD occurs, we have constructed a valid forgery. Thus:

Pr[BAD] ≤ Advuf-cma
MAC (Aufcma). (6.26)

G2 In this game, we modify game G1 in the following way: Remove the decryption

algorithm (Dec) call, subsequent padding check, and the assignment to the

buffer msg from the decryption oracle. This corresponds to not perform the

operations in line 37 through line 43 in Figure 6.6 when handling decryption

queries.

We now argue that Game G1 and Game G2 are identical, which would imply:

Pr[G1(Asfcfa) : WIN ] = Pr[G2(Asfcfa) : WIN ] . (6.27)

The only potential for difference comes from the operations after the replaced

MAC tag verification. If condition (6.24) is not true, we have ||(LP) � ||(LC)

(see above). Hence, in Game G1 the only input to Dec is in-sync packets

produced legitimately by the encryption oracle. This will not produce any

output to the adversary because it will be filtered out by the decryption oracle.

This establishes (6.27).
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G3 In this game, we modify how we compute the MAC tag. In the encryption oracle

the MAC tag is not computed using the tagging algorithm Mac but, instead,

by sampling a uniformly random string of length `tag, which is then used as

the MAC tag. We argue there exists an adversary Aprf such that:

Pr[G2(Asfcfa) : WIN ]− Pr[G3(Asfcfa) : WIN ] ≤ AdvPRF
Mac(Aprf). (6.28)

Recall that a PRF adversary has access to an oracle Oprf that either computes

using the algorithm Mac or a randomly chosen function f. Given Asfcfa, we

construct Aprf as follows: Aprf runs Asfcfa, simulating Game G2 but replacing

the computation of the MAC tag with a call to Oprf . If Asfcfa wins (i.e. event

WIN occurs) then Aprf outputs 1, and 0 otherwise.

If Oprf is instantiated with Mac then Aprf perfectly simulates Game G2. If Oprf

is instantiated with a random function then Aprf perfectly simulates Game

G3. This is only true if no query to the random function is ever repeated; the

sequence number that forms part of the query ensures this (under restriction

Rfgetm). This proves (6.28).

To finish, we show:

Pr[G3(Asfcfa) : WIN] ≤
Advind-cpa

SE (Acpa) + 1

2
. (6.29)

Given adversary Asfcfa, we construct Acpa as follows: Acpa runs Asfcfa and

simulates game G3 (without sampling a bit). Calls to the left-or-right oracle

by Asfcfa are handled by first preparing two packets packet0 and packet1 (one

for each plaintext input M0 and M1) as defined in ssh-fgEtM-Enc. Then,

Acpa submits (packet0, packet1) to its left-or-right oracle available through the

IND-CPA game. This produces a packet cpacket which is an encryption of

packetd, where d is the bit sampled in the IND-CPA game unknown to Acpa.

Acpa then samples `tag random bytes to be used as the MAC tag. Acpa uses

cpacket concatenated with the `tag random bytes to answer the encryption query

from Asfcfa. Acpa outputs the guess returned by Asfcfa, say d′. Acpa perfectly

simulates game G3 for Asfcfa. If Asfcfa wins, then d′ must be the correct guess of

bit d (Md′ was used to produce the packet cpacket). Acpa can simulate decryption

queries by Asfcfa because neither Dec or MAC are needed. This proves (6.29).

Combining (6.23), (6.25), (6.26), (6.27), (6.28) and (6.29) yields the advantage

bound (6.22).
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Finally, we analyse the resource consumption of the adversaries. Suppose Asfcfa

makes qe encryption queries totalling µe bytes, and qd decryption queries. Then:

Aufcma: Makes qe tagging oracle queries totalling at most µe
2 + qe · (1 + bsize + 3) +

qe · (4 + 4) bytes, and 1 verification oracle query. The first term follows because

the encryption oracle picks one out of two plaintexts. The second term follows

because the plaintext is encoded with a padding length field of 1 byte and

at most bsize + 3 bytes of padding. The last term follows because for each

query the additional input to the MAC tagging algorithm (Mac), excluding

the packet, is a 4-byte sequence number and a 4-byte length field (assuming

UMAC is not negotiated).

Aprf : Makes one oracle query for each encryption query, which makes qe oracle

queries in total.

Acpa: Makes qe oracle queries totalling at most µe + qe · (1 + bsize + 3) bytes. Same

arguments as above, except Acpa uses both plaintexts queried by Asfcfa which

removes the denominator in the first term.

Aufcma, Aprf and Acpa clearly have similar running time to Asfcfa.

Theorem 8 (SSH-Fixed-Generic-EtM is INT-sfCTF secure).

Let SE = (Gen,Enc,Dec) be a length-preserving probabilistic symmetric encryp-

tion scheme with associated key space KSE ⊂ B∗, plaintext space MSE = B∗

and ciphertext space C = B∗, and let MAC = (Gen,Mac) be a message authen-

tication code with key space KMAC ⊂ B∗, message space MMAC = B∗ and tag

length `tag. Let SSH-fgEtM(SE,MAC) be the SSH encryption scheme defined in Fig-

ure 6.6. Then for any INT-sfCTF adversary Actf , respecting restriction Rfgetm, against

SSH-fgEtM(SE,MAC), there exists a UF-CMA adversary Aufcma against MAC such

that

Advind-ctf
SSH-fgEtM(SE,MAC)(Actf) ≤ Advuf-cma

MAC (Aufcma), (6.30)

where Aufcma has similar running time to Actf . If Actf makes qe encryption queries

totalling µe bytes, then Aufcma makes qe oracle queries totalling at most µe + qe · (12 +

bsize) bytes.

Proof of Theorem 8. The proof is almost identical to the proof for Theorem 7. For

each game below, let FORGE represent the event that the adversary wins according

to the win condition in Definition 21.
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G0 This is the INT-sfCTF game instantiated with SSH-fgEtM(SE,MAC). Hence:

Pr
[

INI, AENC(·),DEC(·)
ind-ctf : FORGE

]
= Pr[G0(Actf) : FORGE ] . (6.31)

G1 Make the same modifications that were made to define Game G1 in the proof

of Theorem 7. Also, let BAD be the event defined in the same proof. Using

identical arguments, we have:

Pr[G0(Actf) : FORGE ]− Pr[G1(Actf) : FORGE ] ≤ Pr[BAD] . (6.32)

Define Aufcma as in the proof for Theorem 7. Again, using identical arguments,

we have:

Pr[BAD] ≤ Advuf-cma
MAC (Aufcma). (6.33)

G2 Make the same modifications that were made to define Game G2 in the proof

of Theorem 7. Using identical arguments, we have:

Pr[G1(Actf) : FORGE ] = Pr[G2(Actf) : FORGE ] . (6.34)

But in Game G2 it is obvious that the decryption oracle will never output any

element from the set {0, 1,¶}+. Therefore:

Pr[G2(Actf) : FORGE ] = 0. (6.35)

Combining (6.31), (6.32), (6.33), (6.34), and (6.35) yields the advantage bound (6.30).

Aufcma is identical to the UF-CMA adversary in the proof for Theorem 7 and consumes

the same amount of resources and has similar running time.

Note that theorems Theorem 7 and Theorem 8 only require UF-CMA. We can contrast

this against a general Encrypt-then-Authenticate (the MAC is replaced with a general

message authentication scheme, cf. Section 2.3.7) construction, where the message

authentiation scheme used (typically) must meet SUF-CMA to be able to achieve

IND-CCA - the intuition is that we must ensure the ciphertext is not malleable. But

in the theorems above, we use deterministic MACs, where the two security notions

UF-CMA and SUF-CMA equal strength cf. Section 2.3.7 under security notions).

6.4.1 SSH-Fixed-Generic-EtM and IV-based Encryption

Theorem 7 assumes SSH-fgEtM is instantiated with a probabilistic symmetric en-

cryption scheme. This assumption does not capture instantiations with IV-based
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symmetric encryption schemes as defined in Definition 9. The only supported IV-

based scheme in OpenSSH is CBC-mode. It is well known that such schemes are

insecure if they are used in the standard Encrypt-and-MAC SSH construction. We

saw several such examples in Chapter 5. The CBC construction uses IV chaining,

where the IV is the last ciphertext block from the previous encryption, and only

initially generated uniformly at random. This is generally an insecure way of im-

plementing CBC-mode. An obvious fix would be to generate a uniformly random

IV for each encryption. However, Bellare et al. [20] show that this construction

is insecure (in the sense that it does not meet IND-CCA). They propose several

possible modifications to the CBC-mode implementation that can yield a IND-CCA

secure SSH encryption scheme. One instantiation is to use uniformly random IVs

and require that the padding bytes are also chosen uniformly at random.

If we envision that SSH-fgEtM is instantiated with an IV-based symmetric encryption

scheme ivSE, that generates the IV uniformly at random (and sends the IV along

with the packet) and use uniformly random padding, it is possible to reuse most of

the proof for Theorem 7 to show that SSH-fgEtM(ivSE,MAC) is IND-sfCFA secure

with advantage bound:

Advind-sfcfa
SSH-fgEtM(ivSE,MAC)(Asfcfa) ≤ 2 · AdvivE

ivSE(Aive) + 2 · Advuf-cma
MAC (Aufcma)

+ 2 · AdvPRF
Mac(Aprf). (6.36)

The required modifications to the proof are as follows: In Game G3 don’t bound the

probability of winning the game. Instead, define a new Game G4 that replaces the

encryption algorithm with the sampling of a random string of length |IV |B + `packet

(using that the encryption algorithm is length-preserving). Then we can bound the

difference between winning G3 and G4 with the advantage of winning the ivE security

game (cf. Definition 11). The proof can be finished by noting that winning Game G4

can only happen with probability 1/2.

Using the proof for Theorem 8 it can also be shown that SSH-fgEtM(ivSE,MAC) is

INT-sfCTF secure with advantage bound:

Advind-ctf
SSH-fgEtM(ivSE,MAC)(Actf) ≤ Advuf-cma

MAC (Aufcma).

Note, however, that the scheme SSH-fgEtM(ivSE,MAC) does not perfectly capture

instantiating SSH-fgEtM with the OpenSSH CBC-mode encryption scheme, because

the “real” SSH encryption scheme is not using random IV’s.
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6.5 SSH-AES-GCM in OpenSSH

The AES-GCM AEAD scheme is specified in [107]. The AES-GCM based SSH

encryption scheme SSH-AES-GCM is described in RFC 5647 [85] and denoted by

aesk-gcm@openssh.com, where k is either 128 or 256 depending on the key size. OpenSSH

follows the RFC 5647 specification.

Now we turn to describe how SSH-AES-GCM is implemented in OpenSSH. Inter-

nally, OpenSSH makes use of AES-GCM encryption and decryption functions from

OpenSSL. The two common inputs to these two functions are 4 bytes of additional

data and a 12-byte nonce.4 The former consists of the length field represented as a

32-bit unsigned integer. The latter is constructed by concatenating a 4-byte fixed

field (fixed field) and an 8-byte invocation counter (ICF), both of which are generated

uniformly at random during setup. For each encryption and decryption operation,

the ICF is incremented by one while the fixed field is invariant. Internally, the

OpenSSL encryption and decryption functions also maintain a 4-byte block counter;

this is initialised to one and incremented as each block of key is produced. As

with SSH-Fixed-Generic-EtM (and for the same reason), SSH-AES-GCM deviates from

Section 6.3 of [135] by not encrypting the length field. Additionally, SSH-AES-GCM

does not follow a requirement of Section 6.4 in [135], which specifies that the sequence

number must be integrity protected. Implicitly, though, this requirement is satisfied

because the value of ICF is equal to the sequence number plus some fixed offset.

Decryption for SSH-AES-GCM extracts the length field from the stream of received

bytes, verifies the length field, and then calls the internal OpenSSL AES-GCM de-

cryption function once sufficient bytes have arrived. See Figure 6.4 for an illustration

of the encryption and authentication scope of SSH-AES-GCM in OpenSSH.

To write up a full, detailed pseudo-code of SSH-AES-GCM, we abstract the OpenSSL

AES-GCM encryption and decryption functions using a nonce-based symmetric

encryption scheme nSE = (Gen,Enc,Dec) (cf. Definition 10), with the caveat that

Enc must have constant ciphertext expansion of size `exp bytes (necessary to locate

packet boundaries). That is, if C ← Enck(M) then |C|B = |M |B +`exp. This normally

accounts for the addition of an authentication tag that is appended to the encrypted

plaintext to produce the final ciphertext. This is, for example, true for AES-GCM

4The specification [85] calls this input an initialisation vector and denotes it by IV . But this is
really a nonce, which is why we stick to our naming.
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Length Padding length Payload Padding

Additional data

Encryption scope

Authentication scope

Figure 6.4: Cryptographic processing of a SSH BPP packet using the SSH encryption
scheme SSH-AES-GCM. The size ratios between the boxes do not represent the size
ratios between fields in an SSH BPP packet in general.

where `exp = 16, which is the tag length of the MAC tag produced by the polynomial

MAC GHASH used to construct AES-GCM.

Define SSH-N(nSE) to be the SSH encryption scheme SSH-AES-GCM described above,

but where the AES-GCM nonce-based symmetric encryption scheme is replaced

with a generic nonce-based symmetric encryption scheme nSE having 12-byte nonces.

This abstraction means that Theorem 9 and Theorem 10 capture more than just

SSH-AES-GCM. SSH-N could be generalised further by considering a general nonce

generation function that generates a new nonce for each encryption/decryption call,

instead of the SSH-AES-GCM specific way of generating the nonce. However, for

simplicity, we chose not to pursue this abstraction. See Figure 6.7 (at the end

of this chapter) for the detailed pseudo-code of SSH-N. SSH-N is a symmetric

encryption scheme supporting ciphertext fragmentation with associated key space

K = Bkey len, plaintext space M = B∗, ciphertext space C = B∗ and error set

S⊥ = {⊥SSH ERR CONN CORRUPT,⊥SSH ERR MAC INVALID}.

We are now ready to prove that SSH-N meets both IND-sfCFA and INT-sfCTF.

Because of the way the nonce is constructed and incremented (only incrementing 8

bytes of the entire 12-byte nonce), the nonce will repeat after 264 increments. This

means we cannot allow calling the encryption and decryption oracles more than 264

times. We capture this in the following restriction:

RN: The adversary must make no more than 264 encryption and decryption queries.

We first prove that SSH-N is IND-sfCFA secure under RN.

Theorem 9 (SSH-N is IND-sfCFA secure).

Let nSE = (Gen,Enc,Dec) be a nonce-based symmetric encryption scheme with

associated key space K = Bkey len, plaintext space M = B∗, ciphertext space C = B∗,
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nonce space B12 ⊆ N , additional data space B4 ⊆ A and constant ciphertext expansion

`exp. Let SSH-N(nSE) be the SSH encryption scheme defined in Figure 6.7. For any

adversary Asfcfa, respecting restriction RN, against SSH-N(nSE), there exists an nAE

adversary Anae against nSE such that:

Advind-sfcfa
SSH-N(nSE)(Asfcfa) ≤ 2 · AdvnAE

nSE (Anae), (6.37)

where adversary Anae has similar running time to Asfcfa. If Asfcfa makes qe encryption

queries totalling µe bytes and qd decryption queries, then Anae makes qe encryption

queries totalling at most µe
2 +qe ·(8+bsize) and µd

4+bsize+`exp
decryption queries totalling

µd bytes.

Proof of Theorem 9. We first define two games. For each game let WIN represent

the event that the adversary guesses the bit b correctly.

G0 This is the IND-sfCFA game instantiated with SSH-N(nSE). Hence:

Pr
[

INI : ALR(b,·,·),DEC(·) = b
]

= Pr[G0(Asfcfa) : WIN ] . (6.38)

G1 Define the list LP as in Game G1 from the proof of Theorem 7 except we assign

frag[0 : 4 + `packet + `exp − 1] to LP at index seqnr. In the decryption algorithm

ssh-n-Dec, remove line 26 through line 30 and line 35 through line 40. At the

same time, replace the condition in line 31 with the condition:

(||(LP) � ||(LC)) ∧ (||(LP[0 : seqnr − 1]) � ||(LC)) . (6.39)

Additionally, remove the Enc algorithm in ssh-n-Enc and, instead, let cpacket be

a uniformly random byte-string of size `packet + `exp sampled per encryption

query.

GivenAsfcfa and nAE oracles (O1,O2) ∈ {(ENC,DEC), ($,Err)} define adversary

Anae as follows: Sample a bit b and run Asfcfa answering its queries as follows:

LR: Simulate the IND-sfCFA encryption oracle LR instantiated with encryption

algorithm ssh-n-Enc but replacing ssh-n-Enc with a query to O1 using the

same input.

DEC: Simulate the IND-sfCFA decryption oracle DEC instantiated with decryp-

tion algorithm ssh-n-Dec but replacing Dec with a query to O2 using the

same input.

If b′ is the output from Asfcfa, then Anae outputs 1 if b = b′ and 0 otherwise.
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We will prove:

Pr[G0(Asfcfa) : WIN]− Pr[G1(Asfcfa) : WIN] ≤ AdvnAE
nSE (Anae). (6.40)

If (O1,O2) = (ENC,DEC). Then Anae perfectly simulates the IND-sfCFA secu-

rity game for Asfcfa. Furthermore, if Asfcfa wins, then Anae returns 1, and vice

versa. Hence:

Pr[G0(Asfcfa) : WIN ] = Pr
[

INI : AENC(·,·,·),DEC(·,·,·)
nae = 1

]
. (6.41)

Now consider the case where (O1,O2) = ($,Err). In the following, we will

consider the output from the decryption oracle in Game G1 and from the

decryption oracle simulated by Anae when answering queries from Asfcfa. We

reference the former by DG1 and reference the latter by DAnae . Denote by

SYNC the condition (6.39). We can consider SYNC as an event in both DG1

and DAnae . In the following, it is established that the output from DG1 and

DAnae is identical.

We first argue that if SYNC has not happened then the output in DG1 and

DAnae is identical. But since SYNC is a necessary condition for the out-of-sync

flag sync to be set, this is clearly the case.

Consider now the query for which the event SYNC occurs. In DG1, we have

msg = msg′|| ⊥SSH ERR MAC INVALID after the decryption algorithm ssh-n-Dec

returns. The msg′ part can only consist of in-sync plaintext produced by the

encryption algorithm (otherwise SYNC would have occurred earlier). Therefore,

after removing the in-sync plaintext using the list LM, the output in DG1

is ⊥SSH ERR MAC INVALID. The situation is the same in DAnae , where we have

msg = msg′′|| ⊥SSH ERR MAC INVALID. The part msg′′ can (also) only consist of

in-sync plaintext. Therefore, the output in DAnae is also ⊥SSH ERR MAC INVALID.

In the event of SYNC, the closed flag CLOSED will be set in both DG1 and

DAnae and the subsequent output will therefore also be identical.

This shows that the output in DG1 and DAnae is identical. Hence, Anae perfectly

simulates Game G1. If Asfcfa win then Anae returns 1, and vice versa. Hence:

Pr[G1(Asfcfa) : WIN ] = Pr
[

INI : A$(·,·,·),Err(·,·,·)
nae = 1

]
. (6.42)

Combining (6.41) and (6.42) establishes (6.40).

Consider the outputs seen by the adversary in Game G1. The encryption oracle

outputs uniformly random strings of the same length as legitimate packets.

The adversary cannot learn anything from this output. The decryption oracle
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outputs either the empty string or the error ⊥SSH ERR MAC INVALID. The error is

only returned when the out-of-sync flag is set, which the adversary can already

compute knowing the input and output of the encryption oracle. Therefore:

Pr[G1(Asfcfa) : WIN ] =
1

2
. (6.43)

Combining (6.38), (6.40) and (6.43) yields advantage bound (6.37).

Suppose Asfcfa makes qe encryption queries totalling µe bytes and qd decryption

queries totalling µd bytes. Then Anae makes qe encryption queries totalling µe
2 + qe ·

(1 + bsize + 3) + qe · 4. The first term follows because the encryption oracle picks

one out of two plaintexts. The second term follows because the plaintext is encoded

with a padding length field of 1 byte and at most bsize + 3 bytes of padding. The

last term follows because for each query we include 4 bytes of additional data. In

addition, Anae makes at most µd
4+bsize+`exp

decryption queries totalling at most µd

bytes. The number of decryption queries follows because the smallest packet size is

4 + bsize + `exp.

It can be checked that Anae has similar running time to Asfcfa

Theorem 10 (SSH-N is INT-sfCTF secure).

Let nSE = (Gen,Enc,Dec) be a nonce-based symmetric encryption scheme with

associated key space K = Bkey len, plaintext space M = B∗, ciphertext space C = B∗,

nonce space B12 ⊆ N , additional data space B4 ⊆ A and constant ciphertext expansion

`exp. Let SSH-N(nSE) be the SSH encryption scheme defined in Figure 6.7. For any

adversary Actf , respecting restriction RN, against SSH-N(nSE), there exists an nAE

adversary Anae against nSE such that:

Advind-ctf
SSH-N(nSE)(Actf) ≤ AdvnAE

nSE (Anae), (6.44)

where adversary Anae has similar running time to Actf . If Actf makes qe encryption

queries totalling µe bytes and qd decryption queries totalling at most µd bytes, then

Anae makes qe encryption queries totalling at most µe+ qe · (8 + bsize) and µd
4+bsize+`exp

decryption queries totalling at most µd bytes.

Proof of Theorem 10. The proof is almost identical to the proof of Theorem 10. For

each game below, let FORGE represent the event that the adversary wins according

to the win condition in Definition 21.
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G0 This is the INT-sfCTF game instantiated with SSH-N(nSE). Hence:

Pr
[

INI, AENC(·),DEC(·)
ctf : FORGE

]
= Pr[G0(Actf) : FORGE ] . (6.45)

G1 Make the same modifications that were made to define Game G1 in the proof

of Theorem 9. Additionally, define Anae similarly, except Anae outputs 1 if

FORGE occurs and 0 otherwise. Using the exact same arguments, we have:

Pr[G0(Actf) : FORGE ] ≤ AdvnAE
nSE (Anae) + Pr[G1(Actf) : FORGE ] . (6.46)

But in Game G1 it is obvious that the decryption oracle will never output any

element from the set {0, 1,¶}+. Therefore:

Pr[G1(Actf) : FORGE ] = 0. (6.47)

Combining (6.45), (6.46) and (6.47) yields advantage bound (6.44).

Suppose Actf makes qe encryption queries totalling µe bytes and qd decryption queries

totalling µd bytes. Then Anae makes qe encryption queries totalling µe + qe · (1 +

bsize + 3) + qe · 4. The first term follows because the encryption oracle uses the entire

input in its own query. The second term follows because the plaintext is encoded

with a padding length field of 1 byte and at most bsize + 3 bytes of padding. The

last term follows because for each query we include 4 bytes of additional data. In

addition, Anae makes at most µd
4+bsize+`exp

decryption queries totalling at most µd

bytes. The number of decryption queries follows because the smallest packet size is

4 + bsize + `exp.

It can be checked that Anae has similar running time to Asfcfa

6.6 Boundary Hiding and DoS

As mentioned previously, in addition to confidentiality and integrity, the relevant SSH

RFC [135] aims to mitigate against traffic analysis and denial of service. Encrypting

the length field in basic SSH encryption schemes (such as schemes using CBC-mode

or CTR-mode) is designed to make traffic analysis based on packet lengths more

difficult for passive attackers. However, an active attacker can manipulate packet bits

after the length field and observe the number of bytes injected before a MAC error is

produced.5 Denial of service here refers to an attacker flipping bits in the (encrypted)

5When CBC-mode is used, OpenSSH’s countermeasure to [?] prevents this simple byte-counting
attack. However, a timing channel still exists, cf. Chapter 5
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packet length field, causing the receiver to expect a very long packet, leading to a

long delay in interaction for the sender and allocation of resources on the receiver’s

end, cf. [114]. Indeed, the RFC states that implementations “SHOULD check that

the packet length is reasonable” and OpenSSH imposes an upper limit of 218 on the

32-bit packet length field. Boldyreva et al. [36] introduced formal security notions

to capture these goals, namely BH-CPA, BH-sfCFA, and n-DOS-sfCFA, presented

in Chapter 3. We discuss these informally in relation to SSH.

Completely hiding plaintext lengths is impossible unless some efficiency is sacrificed.

Indeed, simply encrypting the length field does not conceal plaintext lengths, at least

not in a sense that is easy to formalise. However, one can hope to hide (encrypted)

packet boundaries, meaning that a sequence of packets will look like a stream of

random bits, which can help to mitigate traffic analysis. Intuitively, the boundary

hiding notions (cf. Section 3.6) say that, given a concatenation of packets, an adversary

is unable to determine the packet boundaries, and hence can neither determine the

number of packets included in the concatenation nor their individual sizes. Since both

SSH-Fixed-Generic-EtM and SSH-AES-GCM expose the length field in the clear it is

trivial for an adversary to determine packet boundaries. In contrast, in Theorem 6 we

showed SSH-ChaCha20-Poly1305 meets BH-CPA. However, SSH-ChaCha20-Poly1305

is not BH-sfCFA-secure due to the bit-flipping attack outlined above.

Recall, n-DOS-sfCFA security (cf. Section 3.7) requires that no adversary be able to

forge a sequence of packet fragments, totalling n bits, such that the decryption of the

sequence returns no output. One can always trivially achieve n-DOS-sfCFA security

by imposing an upper limit on the packet size, but this is not ideal as it would

necessarily limit the maximum plaintext size. Thus, the technically interesting (and

useful) case is when n is significantly smaller than the longest possible packet. None

of the three SSH encryption schemes mentioned in this chapter achieve n-DOS-sfCFA

for n smaller than the maximum packet size, since even though the packet length

field is integrity protected in all three cases, the MAC tag is only verified after the

complete packet (as indicated by the packet length field) has been received. Thus,

an adversary could change the contents of the length field to the maximum accepted

value (218 for OpenSSH), and the receiver would experience a connection hang until

it had received 256 kilobytes of packet data, at which point the connection would be

dropped.

Bringing together the discussion in this section with the results of the previous
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IND-sfCFA INT-sfCTF BH-CPA BH-sfCFA n-DOS-sfCFA

SSH-ChaCha20-Poly1305
Figure 6.5

3

Theorem 5
3

Theorem 4
3

Theorem 6
7 7

SSH-Fixed-Generic-EtM
Figure 6.6

3

Theorem 7
3

Theorem 8
7 7 7

SSH-AES-GCM
Figure 6.7

3

Theorem 9
3

Theorem 10
7 7 7

Table 6.1: Security comparison of SSH encryption schemes in OpenSSH that are
analysed in Chapter 6.

sections justifies the content of Table 6.1.
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alg. ssh-ChaCha20-Poly1305-Gen

1 : seqnr = 0

2 : frag = ε

3 : CLOSED = false

4 : k←$ B64

5 : σ = seqnr

6 : % = (frag, seqnr, `packet,CLOSED)

7 : return (k, σ, %)

alg. ssh-ChaCha20-Poly1305-Enck(m,σ)

1 : seqnr← Parse(σ)

2 : k1 = k [0 : 31]B

3 : k2 = k [32 : 63]B

4 : `m = |m|B
5 : `pad = 8− ((1 + `m) mod 8)

6 : if `pad < 4

7 : `pad = `pad + 8

8 : pad←$ B`pad

9 : packet = 〈`pad〉8 ‖ m ‖ pad

10 : `packet = 1 + `m + `pad

11 : block ctr = 0

12 : nonce = 〈seqnr〉64
13 : kpoly ← ChaCha20k2

((0x00)32, nonce, block ctr)

14 : clength ← ChaCha20k1
(〈`packet〉32, nonce, block ctr)

15 : block ctr = 1

16 : cpacket ← ChaCha20k2
(packet, nonce, block ctr)

17 : τ ← Poly1305MACkpoly
(clength ‖ cpacket)

18 : seqnr = seqnr + 1

19 : return (clength ‖ cpacket ‖ τ, seqnr)

ssh-ChaCha20-Poly1305-Deck(f, %)

1 : if CLOSED

2 : return (ε, %)

3 : (frag, seqnr, `packet,CLOSED)← Parse(%)

4 : k1 = k[0 : 31]B

5 : k2 = k[32 : 63]B

6 : frag = frag ‖ f
7 : m = ε

8 : msg = ε

9 : while |frag|B > 0

10 : if `packet = 0

11 : if `frag ≥ 4

12 : block ctr = 0

13 : nonce = 〈seqnr〉64
14 : clength = frag[0 : 3]B

15 : `packet = 〈ChaCha20k1
(clength, nonce, block ctr)〉−1

16 : if ¬(5 ≤ `packet ≤ 218)

17 : CLOSED = true

18 : % = (frag, seqnr, `packet,CLOSED)

19 : return (msg ‖⊥SSH ERR CONN CORRUPT, %)

20 : else

21 : % = (frag, seqnr, `packet,CLOSED)

22 : return (msg, %)

23 : if `packet mod 8 6= 0

24 : CLOSED = true

25 : % = (frag, seqnr, `packet,CLOSED)

26 : return (msg ‖⊥SSH ERR MAC INVALID, %)

27 : `frag = |frag|B
28 : if `frag < 4 + `packet + 16

29 : % = (frag, seqnr, `packet,CLOSED)

30 : return (msg, %)

31 : else

32 : τ = frag[4 + `packet : 4 + `packet + 16− 1]B

33 : block ctr = 0

34 : nonce = 〈seqnr〉32
35 : kpoly ← ChaCha20k2

((0x00)32, nonce, block ctr)

36 : τexpected ← Poly1305MACkpoly
(frag[0 : 4 + `packet])

37 : if τ 6= τexpected

38 : CLOSED = true

39 : % = (frag, seqnr, `packet,CLOSED)

40 : return (msg ‖⊥SSH ERR MAC INVALID, %)

41 : block ctr = 1

42 : m← ChaCha20k2
(frag[4 : 4 + `packet], nonce, block ctr)

43 : `pad = 〈m[0]B〉−1

44 : if `pad < 4

45 : CLOSED = true

46 : % = (frag, seqnr, `packet,CLOSED)

47 : return (msg ‖⊥SSH ERR CONN CORRUPT, %)

48 : msg = msg ‖ m[1 : 1 + `packet − (1 + `pad)− 1]B ‖ ¶
49 : frag = frag[4 + `packet + 16− 1 : `frag − 1]B

50 : seqnr = seqnr + 1

51 : `packet = 0

52 : return (msg, (frag, seqnr, `packet,CLOSED))

Figure 6.5: Description of SSH-ChaCha20-Poly1305 in OpenSSH. The number
8 appearing in lines (5) and (7) in ssh-ChaCha20-Poly1305-Enc, and line (23) in
ssh-ChaCha20-Poly1305-Dec denotes the default SSH block size (counted in bytes).
The number 16 appearing in the ssh-ChaCha20-Poly1305-Dec is the length (in bytes)
of the tag τ .
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alg. ssh-fgEtM-Gen

1 : seqnr = 0

2 : `packet = 0

3 : frag = ε

4 : CLOSED = false

5 : ke ← Gene

6 : km ← Genm

7 : k = ke ‖ km

8 : σ = seqnr

9 : % = (frag, seqnr, `packet,CLOSED)

10 : return (k, σ, %)

alg. ssh-fgEtM-Enck(m,σ)

1 : seqnr← Parse(σ)

2 : ke ‖ km ← Parse(k)

3 : `m = |m|B
4 : `pad = bsize− ((1 + `m) mod bsize)

5 : if `pad < 4

6 : `pad = `pad + bsize

7 : pad←$ B`pad

8 : packet = 〈`pad〉8 ‖ m ‖ pad

9 : `packet = 1 + `m + `pad

10 : cpacket ← Encke
(packet)

11 : if use umac

12 : τ ← Mackm
(〈seqnr〉64 ‖ 〈`packet〉32 ‖ cpacket,

13 : 〈seqnr〉64)
14 : else

15 : τ ← Mackm
(〈seqnr〉32 ‖ 〈`packet〉32 ‖ cpacket)

16 : seqnr = seqnr + 1

17 : return (〈`packet〉32 ‖ cpacket ‖ τ, seqnr)

alg. ssh-fgEtM-Deck(f, %)

1 : if CLOSED

2 : return (ε, %)

3 : (frag, seqnr, `packet,CLOSED)← Parse(%)

4 : ke ‖ km ← Parse(k)

5 : frag = frag ‖ f
6 : m = ε

7 : while |frag|B > 0

8 : if `packet = 0

9 : if frag ≥ 4

10 : `packet = 〈frag[0 : 3]B〉−1

11 : if ¬
(
5 ≤ `packet ≤ 218

)
12 : CLOSED = true

13 : % = (frag, seqnr, `packet,CLOSED)

14 : return (msg ‖⊥SSH ERR CONN CORRUPT, %)

15 : else

16 : % = (frag, seqnr, `packet,CLOSED)

17 : return (msg, %)

18 : if `packet mod bsize 6= 0

19 : CLOSED = true

20 : % = (frag, seqnr, `packet,CLOSED)

21 : return (msg ‖⊥SSH ERR MAC INVALID, %)

22 : `frag = |frag|B
23 : if `frag < 4 + `packet + `tag

24 : % = (frag, seqnr, `packet,CLOSED)

25 : return (msg, %)

26 : else

27 : if use umac

28 : τexpected ← Mackm
(〈seqnr〉64 ‖ 〈`packet〉32 ‖ frag[4 : 4 + `packet − 1]B,

29 : 〈seqnr〉64)
30 : else

31 : τexpected ← Mackm
(〈seqnr〉32 ‖ 〈`packet〉32 ‖ frag[4 : 4 + `packet − 1]B)

32 : τ = frag[4 + `packet : 4 + `packet + `tag − 1]B

33 : if τ 6= τexpected

34 : CLOSED = true

35 : % = (frag, seqnr, `packet,CLOSED)

36 : return (msg ‖⊥SSH ERR MAC INVALID, %)

37 : m← Decke
(frag[4 : 4 + `packet − 1]B)

38 : `pad = 〈m[0]B〉−1

39 : if `pad < 4

40 : CLOSED = true

41 : % = (frag, seqnr, `packet,CLOSED)

42 : return (msg ‖⊥SSH ERR CONN CORRUPT, %)

43 : msg = msg ‖ m[1 : 1 + `packet − (1 + `pad)− 1]B ‖ ¶
44 : frag = frag[4 + `packet + `tag − 1 : `frag − 1]B

45 : seqnr = seqnr + 1

46 : `packet = 0

47 : return (msg, (frag, seqnr, `packet,CLOSED))

Figure 6.6: Description of SSH-Fixed-Generic-EtM in OpenSSH instantiated with
the symmetric encryption scheme SE and message authentication code MAC. The
parameter bsize denotes the block size of the symmetric encryption scheme SE. If
such a block size is not well-defined, SSH defaults to a block size of 8 (counted in
bytes), as explained in Section 6.1.
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ssh-n-Gen

1 : seqnr = 0

2 : `packet = 0

3 : frag = ε

4 : CLOSED = false

5 : k←$ Bkey len

6 : ICF←$ B4

7 : fixed field←$ B8

8 : nonce = fixed field ‖ ICF

9 : σ = nonce

10 : % = (frag, seqnr, `packet, nonce,CLOSED)

11 : return (k, σ, %)

ssh-n-Enck(m,σ)

1 : nonce← Parse(σ)

2 : `m = |m|B
3 : `pad = bsize− ((1 + `m) mod bsize)

4 : if `pad < 4

5 : `pad = `pad + bsize

6 : pad←$ B`pad

7 : packet = 〈`pad〉8 ‖ m ‖ pad

8 : `packet = 1 + `m + `pad

9 : add = 〈`packet〉32
10 : fixed field = nonce[0 : 3]B

11 : ICF = nonce[4 : 11]B

12 : nonce = fixed field ‖ 〈〈ICF〉−1 + 1〉64
13 : cpacket ← Enck(packet, nonce, add)

14 : return (〈`packet〉32 ‖ cpacket, nonce)

ssh-n-Deck(f, %)

1 : if CLOSED

2 : return (ε, %)

3 : (frag, seqnr, `packet, nonce,CLOSED)← Parse(%)

4 : frag = frag ‖ f
5 : m = ε

6 : while |frag|B > 0

7 : if `packet = 0

8 : if frag ≥ 4

9 : `packet = 〈frag[0 : 3]B〉−1

10 : if ¬
(
5 ≤ `packet ≤ 218

)
11 : CLOSED = true

12 : % = (frag, seqnr, `packet, nonce,CLOSED)

13 : return (msg ‖⊥SSH ERR CONN CORRUPT, %)

14 : else

15 : % = (frag, seqnr, `packet, nonce,CLOSED)

16 : return (msg, %)

17 : if `packet mod bsize 6= 0

18 : CLOSED = true

19 : % = (frag, seqnr, `packet, nonce,CLOSED)

20 : return (msg ‖⊥SSH ERR MAC INVALID, %)

21 : `frag = |frag|B
22 : if `frag < 4 + `packet + `exp

23 : % = (frag, seqnr, `packet, nonce,CLOSED)

24 : return (msg, %)

25 : else

26 : fixed field = nonce[0 : 3]B

27 : ICF = nonce[4 : 11]B

28 : nonce = fixed field ‖ 〈〈ICF〉−1 + 1〉64
29 : m←$ Deck(frag[4 : 4 + `packet + `exp − 1]B, nonce,

30 : frag[0 : 3]B)

31 : if m =⊥
32 : CLOSED = true

33 : % = (frag, seqnr, `packet, nonce,CLOSED)

34 : return (msg ‖⊥SSH ERR MAC INVALID, %)

35 : `pad = 〈m[0]B〉−1

36 : if `pad < 4

37 : CLOSED = true

38 : % = (frag, seqnr, `packet, nonce,CLOSED)

39 : return (msg ‖⊥SSH ERR CONN CORRUPT, %)

40 : msg = msg ‖ m[1 : 1 + `packet − (1 + `pad)− 1]B ‖ ¶
41 : frag = frag[4 + `packet + `exp − 1 :

∣∣`frag

∣∣
B
− 1]B

42 : seqnr = seqnr + 1

43 : `packet = 0

44 : return (msg, (frag, seqnr, `packet, nonce,CLOSED))

Figure 6.7: Description of SSH-N. The parameter bsize denotes the block size of
the symmetric encryption scheme SE. If such a block size is not well-defined, SSH
defaults to a block size of 8, as explained in Section 6.1.
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Chapter 7

An Improved SSH Encryption
Scheme

In this chapter, we look to fix the weaknesses identified in Chapter 6 by implementing

a symmetric encryption scheme supporting ciphertext fragmentation that meets all

four security notions in the ciphertext fragmentation model. The scheme in focus

is InterMAC, first defined by Boldyreva et al. [36]. We modify the scheme to make

it practical, analyse the modified scheme in the ciphertext fragmentation model,

describe a library libInterMAC that implements InterMAC, and, finally, we construct

InterMAC-based SSH encryption schemes in OpenSSH using the library.

This chapter also highlights many practical aspects of implementing a cryptographic

algorithm from scratch, from considering side-channel protections to the practical

performance of the algorithm in different use-cases, and what can be done to improve

performance.

7.1 Weaknesses in SSH Encryption Schemes

SSH provides confidentiality and integrity through symmetric encryption and message

authentication codes and in Chapter 6 we proved that several SSH encryption schemes

in OpenSSH provide these security properties in the ciphertext fragmentation model.

However, we also saw that no scheme has protection against active boundary hiding

or denial-of-service attacks. The newly introduced schemes SSH-AES-GCM and

SSH-Generic-EtM even fall short of a passive boundary hiding adversary, because the

length field is readily available in the clear in the packet. This goes against one of

the main security goals of SSH to hide plaintext sizes. The newest SSH encryption

scheme in OpenSSH is SSH-ChaCha20-Poly1305 [111]. This scheme reintroduces the

encryption of the length field via a construction that uses separate encryption keys
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for the length field and the rest of the data. The effort expended to encrypt the

length field here highlights the importance given to hiding message plaintext by the

OpenSSH developers.

7.2 InterMAC

A symmetric encryption scheme that simultaneously meets IND-sfCFA, INT-sfCTF,

BH-sfCFA and DOS-sfCFA is the InterMAC scheme from [36]. The construction is

straightforward and, in simple terms, can be described as follows. A message is split

into equal-sized chunks which are then individually fed into an Encrypt-then-MAC

construction. The resulting ciphertexts and MAC tags are concatenated to form the

final ciphertext. We will make various modifications to InterMAC, with the main

changes being:

- Extending the original InterMAC scheme to support arbitrary length, byte-

oriented messages.

- Replacing the Encrypt-then-MAC construction with a general, nonce-based

AE scheme.

We prove that the modifications made to InterMAC do not change its security

properties, see Section 7.2.3.

7.2.1 Original InterMAC

Definition 25 below defines the original InterMAC scheme appearing in [36]. Note

that the chunk length N , message sizes, chunk lengths, etc., are all counted in bytes

compared to the original presentation which counted in bits. This is consistent with

us adopting a presentation of the scheme as explained in Section 2.2.

Definition 25.

Let SE = (Gene,Enc,Dec) be a symmetric encryption scheme with an associated

plaintext space that contains BN+1, for some desired N ∈ N. Furthermore, assume

that Enc encrypts all messages of length N + 1 bytes to ciphertexts of `c bytes. Let

MAC = (Genm,Tag) be a message authentication code with associated plaintext space

{0, 1}∗ and tag length `tag (counted in bytes). Then the (byte-oriented) InterMAC
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alg. Gen

1 : ke ← Gene

2 : km ← Genm

3 : k = ke ‖ km

4 : fail = false

5 : msg ctr = 0

6 : chunk ctr = 0

7 : σ = msg ctr

8 : % = (ε, ε,msg ctr, chunk ctr, fail)

9 : return (k, σ, %)

alg. Enck(m,σ)

1 : ke ‖ km ← Parse(k)

2 : msg ctr← Parse(σ)

3 : c = ε

4 : b = 0x00

5 : for chunk ctr = 0 . . .

(
|m|B
N
− 1

)
6 : l = chunk ctr ·N
7 : r = (chunk ctr + 1) ·N − 1

8 : mchunk = m[l : r]B

9 : if q = |m|B
10 : b = 0x01

11 : cchunk ← Encke
(mchunk ‖ b)

12 : τ ← Mackm
(cchunk ‖ 〈msg ctr〉 ‖

13 : 〈chunk ctr〉)
14 : c = c ‖ cchunk ‖ τ
15 : msg ctr = msg ctr + 1

16 : return (c,msg ctr)

alg. Deck(f, %)

1 : ke ‖ km ← Parse(k)

2 : (frag,msg,msg ctr, chunk ctr, fail)← Parse(%)

3 : frag = frag ‖ f
4 : m = ε

5 : while |frag|B ≥ `c + `tag

6 : cchunk = frag[0 : `c − 1]B

7 : τexpected = frag[`c : `c + `tag − 1]B

8 : frag = frag[`c + `tag : |frag|B − 1]B

9 : τ ← Mackm
(cchunk ‖ 〈msg ctr〉 ‖ 〈chunk ctr〉)

10 : chunk ctr = chunk ctr + 1

11 : if fail = true

12 : m = m ‖ ⊥
13 : elseif τ 6= τexpected

14 : m = m ‖ ⊥
15 : fail = true

16 : else

17 : mchunk ← Decke
(cchunk)

18 : msg = msg ‖ mchunk[0 : N − 1]B

19 : if mchunk[N ]B 6= 0x00

20 : m = m ‖ msg ‖ ¶
21 : msg ctr = msg ctr + 1

22 : chunk ctr = 0

23 : msg = ε

24 : return (m, (frag,msg,msg ctr, chunk ctr, fail))

Figure 7.1: A byte-oriented version of the original InterMAC scheme, OIM.

scheme OIM =
(
Gen,Enc,Dec

)
defined in Figure 7.1 gives a symmetric encryption

scheme supporting ciphertext fragmentation with associated plaintext space {BN}∗.

The InterMac scheme OIM (O for original) works as follows. First the plaintext is

cut into equal size chunks of length N . Each chunk is then encoded by appending a

byte b, we call this byte a chunk delimiter, encoding whether the chunk is the last

chunk in the plaintext or not. The resulting encoded chunks are then individually

encrypted, producing ciphertexts c1chunk, c
2
chunk, . . ., called ciphertext chunks. A MAC

tag is computed over each chunk cichunk, together with the message counter msg ctr

and the chunk counter chunk ctr, producing a MAC tag τ i. Finally, all ciphertext

chunks and associated MAC tags are concatenated, which yields the final ciphertext
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c = c1chunk ‖ τ1 ‖ c2chunk ‖ τ2 ‖ · · · . When decrypting, the fragment f is appended to

the buffer frag. If the buffer contains more than `c + `tag bytes, the ciphertext chunk

cchunk and MAC tag τexpected are extracted, and the extracted data is removed from

the buffer frag. The MAC tag is verified over the ciphertext chunk cchunk, message

counter msg ctr and chunk counter chunk ctr. If the MAC verification fails, the fail

flag fail is set and the (error) symbol ⊥ is appended to the output string buffer m.

If the MAC verification passes, the ciphertext chunk is decrypted into a message

mchunk and is appended to the current plaintext buffer frag. If the final ciphertext

chunk is decrypted the output buffer m is appended with the current plaintext buffer

frag and the plaintext delimiter ¶ after which the plaintext buffer is reset.

The message counter and chunk counter are both important to the security of the

InterMAC scheme. The former prevents trivial reordering of messages as well as

“cross-reordering” where an adversary takes a ciphertext chunk from one ciphertext

and substitutes it into another ciphertext. As a consequence, InterMAC does not

need to rely on an externally managed sequence counter (or other replay-protection

methods) to provide protection against replay attacks. The latter secures against

reordering of ciphertext chunks in a ciphertext. These security claims of course

depend on the message and chunk counter being authenticated. This is achieved for

the original InterMAC scheme because they are included in the MAC scope.

Boldyreva et al. [36] proved that the original InterMAC scheme OIM is IND-sfCFA,

BH-sfCFA and (`c + `tag)-DOS-sfCFA secure. They did not prove that OIM is

INT-sfCTF secure but this can be proven with little effort. The requirements on

the internal symmetric encryption scheme SE and the internal message authentica-

tion scheme MAC are standard: SE must be IND$-CPA secure, while MAC must be

UF-CMA secure and the tagging algorithm Mac must be a PRF.

Using InterMAC brings additional overhead on top of any ciphertext expansion

introduced by the internal symmetric encryption scheme. Namely, both the chunk

encoding and the incremental MACing introduce overhead in the final ciphertext.

The precise overhead can be computed as a function of the chunk length N . This

function is not necessarily a decreasing function of N because the potential ciphertext

expansion of the internal symmetric encryption scheme can increase when increasing
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the chunk length.1 We elaborate on this fact in Section 7.7.

7.2.2 Modified InterMAC

The OIM scheme described in Section 7.2.1 is not suitable for use in practical

applications because only messages that are a multiple of the chunk length can be

encrypted. Fortunately, OIM can be modified to support arbitrary length messages.

We extend OIM with padding such that if the message is not a multiple of the chunk

length N , we apply padding up to the nearest multiple of N . We use alternating-byte

padding. This works by padding with bytes different from the last byte of the

message. Specifically, if the last byte of the message is 0x00, the byte 0x01 is used

as the padding byte and if the last byte of the message is not 0x00, the byte 0x00

is used as the padding byte. This padding scheme is obviously invertible.

In fact, we combine the padding with the chunk delimiter byte to avoid the need to

add complete chunks of padding in the event that the plaintext data is already aligned

on an N -byte boundary. Specifically, if the message length is already a multiple of the

chunk length N , then we set the final chunk delimiter to 0x01, while if the message

length is not a multiple of N , meaning that padding is present, then we set the final

chunk delimiter to 0x02. The final chunk delimiter therefore both indicates when

the end of a ciphertext has been reached and whether the final plaintext chunk was

padded or not. This combined operation is denoted by add padding(·, ·) in Figure 7.2

formally describing the modified InterMAC scheme IM, with output (m, d) denoting

the now padded message m and chunk delimiter byte d. Details of the add padding

function are given in Figure 7.3, while the practical effects of padding on bandwidth

and speed are explored in detail in Section 7.7.

Note that no padding oracle issues, like those that have plagued TLS’s MAC-then-

Encrypt construction, will arise during padding removal, because the message and

padding will always be protected by an AE scheme in our construction. On the

other hand, in a straightforward implementation the running time of the padding

removal process (and handling of the final chunk delimiter) would depend on the

amount of padding and the value of the chunk delimiter byte, which in turn might

lead to leakage of the true message length to an attacker. This is because in such an

1Consider, for example, the natural choice of CBC-mode encryption with some padding scheme
as the internal encryption scheme SE, with N increasing from below to above a block boundary for
the underlying block cipher.
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implementation, one would just inspect bytes from right to left in the final chunk

until a different byte value was encountered, branching at that point. To avoid this

obvious timing side-channel, our remove padding function in Figure 7.3 operates in

a constant-time manner. This means that it must operate on every byte of every

chunk (and not just the last chunk, since we also want to hide the fact that the last

chunk is being processed). This has an obvious performance impact compared to

using a naive routine for padding removal. We discuss this impact in greater detail

in Section 7.7.

In addition to the modifications described above, we make one further change to

the original InterMAC scheme OIM in obtaining the modified scheme IM. Instead

of performing a two-step process by first encrypting an encoded chunk and then

computing a MAC tag over the resulting ciphertext chunk, we use a nonce-based AE

scheme. The nonce-based AE scheme is applied directly on the encoded chunks, while

the message counter msg ctr and chunk counter chunk ctr are used to generate its

nonces. This change means that the chunk counter and message counter are no longer

explicitly authenticated. However, their use to construct the nonces means that

they are protected by standard security properties of nonce-based AE, as we prove

in Section 7.2.3. There are several reasons to make this modification. Firstly, we

wish to make the case for using “modern” primitives. Nonce-based AE schemes have

seen concrete and systematic analysis, are fast, and are widely supported. Secondly,

algorithm agility in InterMAC is easier to achieve when only having to cater for

one algorithm type instead of two algorithms that need to be composed; see further

discussion in Section 7.3.1. Thirdly, using nonce-based AE makes the presentation of

InterMAC cleaner.

The formal definition of IM follows.

Definition 26.

Let SE = (Gen,Enc,Dec) be a nonce-based AE scheme with an associated plaintext

space that contains BN+1, for some desired N ∈ N and that has nonce space N =

{0, 1}n. Choose a, b ∈ N such that a + b = n. Furthermore, assume that SE

encrypts all messages of length N + 1 (counted in bytes) to ciphertexts of length

`c (counted in bytes). Then the modified InterMAC scheme IM =
(
Gen,Enc,Dec

)
defined in Figure 7.2 gives a symmetric encryption scheme supporting ciphertext

fragmentation with associated plaintext space B∗.

147



7.2 InterMAC

alg. Gen

1 : k← Gen

2 : fail = false

3 : msg ctr = 0

4 : chunk ctr = 0

5 : σ = msg ctr

6 : % = (ε, ε,msg ctr, chunk ctr, fail)

7 : return (k, σ, %)

alg. Enck(m,σ)

1 : msg ctr← Parse(σ)

2 : c = ε

3 : (m, d)← add padding(m,N)

4 : for chunk ctr = 0 . . .

(
|m|B
N
− 1

)
5 : l = chunk ctr ·N
6 : r = (chunk ctr + 1) ·N − 1

7 : mchunk = m[l : r]B

8 : nonce = 〈msg ctr〉a ‖ 〈chunk ctr〉b
9 : if q = |m|B

10 : cchunk ← Enck(mchunk ‖ d, nonce)

11 : else

12 : cchunk ← Enck(mchunk ‖ 0x00,
13 : nonce)

14 : c = c ‖ cchunk

15 : msg ctr = msg ctr + 1

16 : return (c,msg ctr)

alg. Deck(f, %)

1 : (frag,msg,msg ctr, chunk ctr, fail)← Parse(%)

2 : frag = frag ‖ f
3 : m = ε

4 : while |frag|B ≥ `c

5 : cchunk = frag[0 : `c − 1]B

6 : frag = frag[`c : |frag|B − 1]B

7 : nonce = 〈msg ctr〉a ‖ 〈chunk ctr〉b
8 : mchunk ← Deck(cchunk, nonce)

9 : chunk ctr = chunk ctr + 1

10 : if fail = true

11 : m = m ‖ ⊥
12 : elseif mchunk =⊥
13 : m = m ‖ ⊥
14 : fail = true

15 : else

16 : chunk del = mchunk[N ]B

17 : mchunk ← remove padding(mchunk[0 : N − 1]B,

18 : N, chunk del)

19 : if chunk del 6= 0x00

20 : m = m ‖ msg ‖ mchunk ‖ ¶
21 : msg ctr = msg ctr + 1

22 : chunk ctr = 0

23 : msg = ε

24 : else

25 : msg = msg ‖ mchunk

26 : return (m, (frag,msg,msg ctr, chunk ctr, fail))

Figure 7.2: The modified InterMAC scheme IM; functions add padding and
remove padding are defined in Figure 7.3.

The modified InterMAC construction IM exhibits the same security properties as the

original InterMAC construction OIM. In the next section, we formally prove that

this is indeed true.

7.2.3 Security Analysis of IM

We now turn to the task of formally proving that the changes made to the InterMAC

construction OIM in producing IM do not change its security properties. The proofs

for IND-sfCFA, BH-sfCFA and DOS-sfCFA security of OIM appeared in [36]. However,

the security model turned out to be buggy (as discussed in Chapter 3), and so the

proofs for OIM cannot be safely relied upon for IM.

Before diving into the proofs, we start by defining an event BAD. In the rest of this
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alg. add padding(m,N)

1 : size = |m|B
2 : mod = size mod N

3 : if mod = 0

4 : return (m,0x01)

5 : `pad = N −mod

6 : if m[size− 1]B = 0x00

7 : padbyte = 0x01

8 : else

9 : padbyte = 0x00

10 : repeat `pad times

11 : m = m ‖ padbyte

12 : return (m,0x02)

alg. remove padding(m,N, chunk del)

1 : padbyte = m[N − 1]B

2 : `pad = 0

3 : flag = 0

4 : for i = 0 . . . N − 2

5 : flag = flag | (m[N − i]B ⊕ padbyte)

6 : lsb = (flag | (−flag))� 7

7 : add = lsb⊕ 0x01

8 : `pad = `pad + add

9 : mult = chunk del · (chunk del− 1)� 1

10 : `pad = `pad ·mult

11 : m = m[0, N − `pad − 1]B

12 : return m

Figure 7.3: Functions to add byte-alternating padding and compute chunk delimiter,
and to remove byte-alternating padding. The variable flag is to be interpreted as an
unsigned 8-bit integer and −n is defined as the operation 28 − n. Beware that some
systems/languages/compilers may not respect these conventions.

section, when referring to the encryption oracle, we mean either ENC, LR or LR-BH.

Likewise, when referring to the decryption oracle, we mean either DEC or DEC-DOS.

Assume f1, f2, f3, . . . are fragments queried to the decryption oracle and that the sync

flag at some point is set to false. Let v be the unique integer such that before querying

fv, the sync flag is set to true, but after the decryption oracle returns on the query fv,

the sync flag is set to false. Let SFs denote the (byte) string f1 ‖ f2 ‖ · · · ‖ fs. SFs is

the (in order) concatenation of all (fragment) bytes queried to the decryption oracle

after s queries. For s ≥ 1, let CSs denote the (byte) string ||(LC[0 : s−1]), where LC

is as defined in Figure 3.7. We let ie denote the specific value of the variable of the

same name in Figure 3.7 at the point in time where fv is queried to the decryption

oracle. Thus, CSie is the (in order) concatenation of all (ciphertext) bytes returned

by the encryption oracle after ie encryption queries.

Assume that fv is queried to the decryption query. There are exactly two sets

of conditions on CS and SF for which the sync flag can be set to false during the

processing of fv. The two sets of conditions are:

A. |SFv|B > |CSie |B and CSie � SFv. We can find λ ∈ N ∪ 0 such that

|CSie |B ≤ λ · `c < (λ+ 1) · `c − 1,

SF[λ · `c : (λ+ 1) · `c − 1]← frag[0 : `c − 1]B.
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Assume λ is minimal and set δ = SF[λ · `c : (λ+ 1) · `c − 1]. The assignment

in the second line above happens at some point during the execution of the

“while” loop in the decryption algorithm of IM and implies that, at some point,

δ is an input to Dec.

B. There exists an integer µ such that SFv[µ]B 6= CSie [µ]B. Assume µ is minimal.

Let t ≤ ie and λ be the unique integers satisfying:

|CSt−1|B ≤ λ · `c ≤ µ ≤ (λ+ 1) · `c − 1 < |CSt|B .

We must have jd = t and therefore CSjd � SFv. Set δ = SF[λ ·`c : (λ+1) ·`c−1].

In both cases, δ is an input to the decryption algorithm Dec of the underlying

nonce-based encryption scheme. Furthermore, the output from the call Deck(δ, nonce)

is recorded in m (since m 6= ε for in-sync ciphertext). The decryption oracle filters all

previous in-sync plaintext decrypted by Dec, which won’t be returned to an adversary.

Note that we know the exact position at which the output from Deck(δ, nonce) appears

in m without knowledge of the key k, because of the `c-chunk processing. Denote

this position by mδ. Using δ, we define the following event:

BAD: Dec does not return ⊥ on input δ.

In all the following proofs, we will make heavy use of the event BAD. A subtlety in

the theorems below is that their proofs are only valid under the following restrictions

on the adversary:

R1 The adversary must make strictly less than 2a encryption queries and each query

must consist of strictly less than N · 2b bytes.

R2 The adversary must restrict its decryption queries such that the total number of

messages decrypted is strictly less than 2a and each message must consist of

strictly less than N · 2b bytes.

The values a and b refer to the parameters in IM controlling the bit-lengths of

the message counter and chunk counter, respectively. Restrictions R1 and R2 are

necessary to ensure that the nonce used internally in IM does not repeat. The first

theorem shows that IM is `c-DOS-sfCFA secure.
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Theorem 11 (IM is `c-DOS-sfCFA secure).

Let IM be instantiated with the nonce-based AE scheme nSE = (Gen,Enc,Dec). For

any adversary Ados, respecting restrictions R1 and R2, against IM, there exists an

nAE adversary Anae against nSE such that:

Adv`c-dos-sfcfa
IM (Ados) ≤ AdvnAE

nSE (Anae). (7.1)

If Ados makes qe encryption queries totalling µe bytes and qd decryption queries

totalling µd bytes, then Anae makes at most
⌊µe
N

⌋
+ qe encryption queries totalling at

most µe + qe · (N + 1) bytes and at most
⌊
µd
`c

⌋
decryption queries totalling µd bytes.

Proof. It is always possible for an adversary to win the n-DOS-sfCFA game for n < `c

because the IM construction processes fragments in segments of `c bytes; an adversary

could bring the decryption oracle out-of-sync and then query with a fragment of size

`c − 1. When n ≥ `c, we will use the event BAD to upper bound the probability

of the adversary winning. If Ados succeeds then event BAD must have occurred,

otherwise IM would only output ⊥, and the adversary would never win. Therefore:

Advn-dos-sfcfa
IM (Ados) ≤ Pr[BAD ] . (7.2)

We next show that the probability of the event BAD is bounded by the probability

of winning the nAE security game. Let (O1,O2) be oracles such that (O1,O2) ∈
{(ENC,DEC), ($,Err)} and let the adversary Anae have access to both O1 and O2.

Define Anae as follows:

Anae: Run Ados answering its queries to ENC and DEC-DOS as specified below.

While answering queries, Anae maintains: SD, LM, LC and SF from which

Anae can detect when the sync flag sync is set to false. At this point in time

Anae terminates and outputs a guess. If event BAD happened (which can be

discovered by inspecting position mδ), Anae outputs 1, and 0 otherwise.

ENC(·): On input M , simulate ENC and replace the call to Enc with the oracle O1.

DEC-DOS(·): On input F , simulate DEC-DOS and replace the call to Dec with the

oracle O2.

The simulations of ENC and DEC-DOS are perfect until the point in time where the

sync flag sync is set to false. This is also the point in time Anae will terminate. We

next analyse the probability of Anae outputting 1, given the two different sets of

oracles.
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Given (O1,O2) = (ENC,DEC). If BAD happens, then it is obvious that:

Pr[BAD ] ≤ Pr
[

INI : AENC(·,·),DEC(·,·)
nae = 1

]
. (7.3)

Given (O1,O2) = ($,Err). In this case, it is obvious that BAD will never happen,

because the decryption oracle will always output ⊥. Hence:

Pr
[

INI : A$(·,·),Err(·,·)
nae = 1

]
= 0. (7.4)

From (7.3) and (7.4), we have:

Pr[BAD ] ≤ AdvnAE
nSE (Anae). (7.5)

Combining (7.2) and (7.5) yields (7.1).

Suppose Ados makes qe encryption queries totalling µe bytes and qd decryption queries

totalling µd bytes. Then, Anae makes at most
⌊µe
N

⌋
+ qe encryption queries totalling

at most µe + qe · (N + 1) bytes. The term qe comes from potential padding while

the term qe · (N + 1) comes from potential padding and the 1-byte chunk delimiter

encoding. Furthermore, Anae makes at most
⌊
µd
`c

⌋
decryption queries totalling µd

bytes.

We proceed to show that IM also provides active boundary hiding.

Theorem 12 (IM is BH-sfCFA secure).

Let IM be instantiated with the nonce-based AE scheme nSE = (Gen,Enc,Dec). For

any adversary Abhcfa, respecting restrictions R1 and R2, against IM, there exists an

nAE adversary Anae against nSE such that:

Advbh-sfcfa
IM (Abhcfa) ≤ 4 · AdvnAE

nSE (Anae). (7.6)

Suppose Asfcfa makes qe encryption queries totalling µe bytes and qd decryption

queries totalling µd bytes. Then Anae makes at most
⌊µe
N

⌋
+ qe encryption queries

totalling at most µe + qe · (N + 1) bytes and at most
⌊
µd
`c

⌋
decryption queries totalling

µd bytes.

Proof. We prove the theorem through a sequence of games. For each of these games,

let WIN represent the event that the adversary guesses the bit b correctly.

G0 This is the BH-sfCFA game instantiated with IM. Hence:

Pr
[

INI : ALR-BH(b,·,·),DEC(·)
bhcfa = b

]
= Pr[G0(Abhcfa) : WIN] . (7.7)
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G1 In this game, we modify the decryption oracle. When the sync flag sync is set

to false the output buffer m is set to a sequence of ⊥ symbols. The number

of ⊥ symbols in the sequence is computed as the number of chunks contained

in m after the remainder operation between SD and (possibly a substring of)

LM. In this computation, if the symbol ⊥ appears in m, it counts as a chunk.

In addition, some chunks might not consist of N bytes, since padding could

have been removed but such occurrences can be detected by looking for the

end-of-message symbol ¶. In all subsequent decryption oracle queries, the

output buffer m is also replaced by a sequence of ⊥ symbols. The number of ⊥
symbols is the number of segments, of length `c bytes, processed by Dec. The

games G0 and G1 are identical until to the point in time where the sync flag is

set to false. In the case of IM, the games will remain identical if BAD does

not occur. Hence:

Pr[G0(Abhcfa) : WIN ]− Pr[G1(Abhcfa) : WIN ] ≤ Pr[BAD] . (7.8)

Using the same arguments as in the proof of Theorem 11, we can construct an

adversary A1
nae such that:

Pr[BAD] ≤ AdvnAE
nSE (A1

nae). (7.9)

G2 In this game, we modify the decryption oracle to utilise LM, LC, and SF to

simulate when the sync flag should be set to false and how long the sequence

of ⊥ symbols should be. This modification does not alter the output of the

decryption oracle and therefore, does not change the output distribution. This

implies:

Pr[G1(Abhcfa) : WIN ] = Pr[G2(Abhcfa) : WIN ] . (7.10)

G3 In this game, we replace calls to Enc with calls to $ and replace calls to Dec

with calls to Err. Let A2
nae be an adversary having access to oracles (O1,O2) ∈

{(ENC,DEC), ($,Err)}. Define A2
nae as follows: A2

nae runs Abhcfa using oracles

(O1,O2) to simulate the encryption and decryption oracles. If Abhcfa wins, A2
nae

outputs 1, otherwise outputs 0. Now, if (O1,O2) = (ENC,DEC), A2
nae perfectly

simulates Game G2 and if WIN occurs, A2
nae outputs 1. If (O1,O2) = ($,Err),

A2
nae perfectly simulates Game G3 and if WIN occurs, A2

nae outputs 1. Therefore:

Pr[G2(Abhcfa) : WIN ]− Pr[G3(Abhcfa) : WIN ]

= Pr
[

INI : A2
nae

ENC(·,·),DEC(·,·)
= 1

]
− Pr

[
INI : A2

nae
$(·,·),Err(·,·)

= 1
]

≤ AdvnAE
nSE (A2

nae). (7.11)
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Consider Game G3. On decryption queries, the adversary can only obtain

strings containing the symbol ⊥. On encryption queries, the adversary only

obtains byte strings consisting of concatenations of uniformly random strings

returned by the oracle $. The adversary, therefore, does not learn anything

about the bit b from the combination of decryption and encryption queries.

Hence:

Pr[G3(Abhcfa) : WIN] =
1

2
. (7.12)

Set Anae to be either A1
nae or A2

nae such that AdvnAE
nSE (Anae) is maximised. Combin-

ing (7.7), (7.8), (7.9), (7.10), (7.11), and (7.12) yields (7.6).

Suppose Asfcfa makes qe encryption queries totalling µe bytes and qd decryption

queries totalling µd bytes. Then, Anae makes at most
⌊µe
N

⌋
+ qe encryption queries

totalling at most µe + qe · (N + 1) bytes. The term qe comes from potential padding

while the term qe · (N + 1) comes from potential padding and the 1-byte chunk

delimiter encoding. Furthermore, Anae makes at most
⌊
µd
`c

⌋
decryption queries

totalling µd bytes. Note, Anae1 and A2
nae consume the same number of resources.

In Game G2, we could remove the decryption algorithm, since it is not needed to

simulate the correct output, and get a tighter bound than the one presented in (7.6)

with a more efficient adversary. However, it helps the understanding in Game G3

when building the second nAE adversary. Combining Theorem 12 and Theorem 3,

we can conclude that IM is also IND-sfCFA secure (under restrictions R1 and R2).

Finally, we prove that IM is INT-sfCTF secure. Because this definition is new the

original InterMAC scheme OIM was not proved INT-sfCTF secure in [36]. However,

only minor modifications in the proof below are required to also prove that OIM is

INT-sfCTF secure.

Theorem 13 (IM is INT-sfCTF secure).

Let IM be instantiated with the nonce-based AE scheme nSE = (Gen,Enc,Dec). For

any adversary Actf , respecting restrictions R1 and R2, against IM, there exists an

nAE adversary Anae against nSE such that:

Advind-ctf
IM (Actf) ≤ AdvnAE

nSE (Anae). (7.13)

Suppose Actf makes qe encryption queries totalling µe bytes and qd decryption queries
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totalling µd bytes. Then Anae makes at most
⌊µe
N

⌋
+ qe encryption queries totalling at

most µe + qe · (N + 1) bytes and at most
⌊
µd
`c

⌋
decryption queries totalling µd bytes.

Proof. We prove the theorem through a sequence of games.

G0 This is the INT-sfCTF game instantiated with IM. Hence:

Pr
[

INI, AENC(·),DEC(·)
ctf : FORGE

]
= Pr[G0(Actf) : FORGE ] . (7.14)

G1 In this game, we make modifications identical to the changes made in Game G1

in the proof of Theorem 12. Using an identical argument, we can construct an

adversary Anae such that:

Pr[G0(Actf) : FORGE ]− Pr[G1(Actf) : FORGE ] ≤ Pr[BAD ] ≤ AdvnAE
nSE (Anae).

(7.15)

Observe that the decryption oracle in Game G1 will never output anything

from the set {0, 1,¶}+. Hence, the event FORGE will never occur in Game G1.

Therefore:

Pr[G1(Actf) : FORGE ] = 0. (7.16)

Combining (7.14), (7.15), and (7.16) yields (7.13).

Suppose Asfcfa makes qe encryption queries totalling µe bytes and qd decryption

queries totalling µd bytes. Then, Anae makes at most
⌊µe
N

⌋
+ qe encryption queries

totalling at most µe + qe · (N + 1) bytes. The term qe comes from potential padding

while the term qe · (N + 1) comes from potential padding and the 1-byte chunk

delimiter encoding. Furthermore, Anae makes at most
⌊
µd
`c

⌋
decryption queries

totalling µd bytes.

This concludes our formal security analysis of IM.

7.3 libInterMAC

This section describes libInterMAC, a reference C-implementation of the IM scheme

presented in Section 7.2.2. We also touch on some of the challenges involved in

bringing InterMAC into practice. Especially, we discuss side-channels and possible

mitigations, cf. Section 7.6. The code of libInterMAC is available at [3].
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libInterMAC has not seen a security review by professional code reviewers. However, a

best-effort has been made to implement IM soundly and faithfully. A number of unit

tests exists in the code base, that verify a the functional correctness the libInterMAC

APIs.

7.3.1 Design Principles

The design of libInterMAC is guided by the following two design principles: ease of

use and extensibility. Furthermore, much effort has been made to carry over proven

theoretical security properties of IM to the implementation.

Ease of Use

Cryptographic software often suffers from poor usability and large APIs. Coupled

with the many pitfalls involved when implementing and using cryptography, poor

usability can have devastating consequences [31, 2]. Consider, for example, software

that implements the nonce-based AE scheme AES-GCM and allows the user to

specify the nonce for each invocation of the encryption algorithm. If the user at any

point reuses a nonce, under the same encryption key, part of the key is leaked [89, 35].

We have attempted to minimise the libInterMAC API as well as making it intu-

itive to use. The API consists of only three functions, im_init(), im_encrypt() and

im_decrypt(), and it is easy to distinguish the functionality of each function simply

by its name.

Extensibility

libInterMAC defines an interface to represent the nonce-based AE scheme required

in the IM construction and utilises the interface internally. Any nonce-based AE

scheme with the same interface can, therefore, be used, allowing users to extend

libInterMAC with other nonce-based AE scheme implementations. In other words,

libInterMAC supports cryptographic algorithm agility, with respect to the internal

nonce-based AE scheme, and aims to adhere to [83] where possible. Cryptographic

algorithm agility is vital to facilitate a quick transition away from schemes that have

become insecure or that have been made otherwise obsolete.
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7.3.2 State Management

The libInterMAC state consists of various elements including the current message and

chunk counters, the user-chosen key, the chunk length and the internal nonce-based

AE scheme. There is no direct method (i.e. through a public API or de-referencing

state fields) by which a user can modify the state. Only when initialising libInterMAC,

through the public initialisation function im_init(), do user-supplied parameters

affect the state. However, these parameters are only used to initialise the state and

are all sanitised. Making state management opaque enhances protection against

unintentional user-triggered state corruption, reuse of counters, etc. Naturally,

although the internal AE schemes used in libInterMAC consume nonces, there is no

interface by which the user can modify those nonces.

7.3.3 Internal Nonce Construction

libInterMAC generates and updates the nonce used in the internal AE scheme accord-

ing to the following procedure: nonces are generated as described in the definition

of IM in Figure 7.2 with a = 64 and b = 32. That is, the first part of the nonce is

the 64 LSBs of the message counter msg ctr, and the last part of the nonce is the

32 LSBs of the chunk counter chunk ctr, producing a 96-bit nonce. Recall that for

each processed message the message counter is incremented and for each processed

chunk the chunk counter is incremented. The nonce-based AE scheme encryption

and decryption algorithms are applied to each chunk. Therefore, the nonce will not

repeat before 264 messages have been processed or divided into more than 232 chunks.

Consequently, for a fixed key, libInterMAC can encrypt a maximum of 264 messages

each up to a maximum of N · 232 bytes before nonce repetition. Note, however, that

the key usage limit also depends on the chosen internal nonce-based AE scheme

which may impose further restrictions. Section 7.4 discuss specific restrictions for

each supported nonce-based AE scheme.

7.4 Supported Nonce-based Symmetric Encryption Schemes

We have implemented support for two different nonce-based AE schemes: ChaCha20-Poly1305

and AES-GCM. Below we describe how each scheme is implemented, and how they

consume the nonce generated in libInterMAC.
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alg. ChaCha20-Poly1305-enc(k, nonce,m)

1 : block ctr = 0

2 : kpoly ← ChaCha20(k,0x0032, nonce, block ctr)

3 : block ctr = 1

4 : τ ← Poly1305MAC(kpoly, c)

5 : c← ChaCha20(k,m, nonce, block ctr)

6 : τ ← Poly1305MAC(kpoly, c)

7 : return c ‖ τ

alg. ChaCha20-Poly1305-dec(k, nonce, c, τexpected)

1 : block ctr = 0

2 : kpoly ← ChaCha20(k,0x0032, nonce, block ctr)

3 : τ ← Poly1305MAC(kpoly, c)

4 : if τ 6= τexpected

5 : return ⊥
6 : block ctr = 1

7 : m← ChaCha20(k, c, nonce, block ctr)

8 : return m

Figure 7.4: The nonce-based AE scheme ChaCha20-Poly1305.

7.4.1 ChaCha20-Poly1305

The nonce-based AE scheme ChaCha20-Poly1305 implemented in libInterMAC closely

follows the AEAD composition of ChaCha20 and Poly1305MAC defined in RFC

7539 [113] and is depicted in Figure 7.4, following the notation defined in Section 6.3.

For convenience, the pseudo-code presents the encryption and decryption operations

separately. ChaCha20-Poly1305 deviates slightly from what is described in RFC 7539.

First, we dispense with the AD (additional data), for the simple reason that it is

not needed. If the message counter and chunk counter were not used to generate

the nonce, they could have been added as additional data. Second, we exclude the

padding and length fields in the input to the Poly1305MAC algorithm. In general,

these fields are important to the security of the construction. For example, without

the length fields an adversary can divide up the received aad ‖ c ‖ τ in a different

way than the sender (e.g. it can make the last part of the additional data aad be the

first part of the ciphertext c) allowing trivial forgery attacks. However, these fields

can be left out under certain conditions. One such instance is when additional data

is not present and when the plaintext/ciphertext is processed in fixed lengths. Both

of these conditions hold true in IM.
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In Figure 7.4, the string 0x0032 consists of 32 0x00-bytes. When used as input in

the ChaCha20 stream cipher the resulting output is the first 32 bytes of the ChaCha20

block function. Note that we must increment the block counter block ctr between

the two invocations of ChaCha20.

7.4.2 AES-GCM

The AES-GCM nonce-based AE scheme is specified in [107]. In libInterMAC, the

AES-GCM scheme is implemented using the Libcrypto EVP API with 128-bit AES.

Libcrypto is part of the OpenSSL Toolkit [46] and the EVP functions provide a

high-level interface to cryptographic functions in Libcrypto. We opted to implement

AES-GCM using Libcrypto’s EVP API because it is widely supported and it automat-

ically applies hardware acceleration when available. This, in turn, can dramatically

increase the performance of AES-GCM.

7.4.3 Why ChaCha20-Poly1305 and AES-GCM?

The decision to support ChaCha20-Poly1305 and AES-GCM as nonce-based AE

schemes is based on the individual strength of each scheme and the diversity they

provide.

The encryption parts of AES-GCM and ChaCha20-Poly1305 are based on two different

design ideas. If one design is found to be weak, then the user can switch to the

other scheme. Because of design diversity it is unlikely that the other scheme would

possess the same weakness. Furthermore, ChaCha20-Poly1305 is designed to be fast

on general purpose CPUs without dedicated cryptography instructions, e.g. mobile

phones. AES-GCM can make use of dedicated CPU instruction sets (aes-ni and

pclmulqdq) that drastically increases its performance.

A positive feature of AES-GCM and ChaCha20-Poly1305 is that they do not have any

ciphertext expansion (beyond the MAC tag) in the case where the nonce does not

need to be sent on the wire. This makes them attractive to use in the IM scheme.

The reason is that IM essentially performs several (shorter) encryptions on each

message. If the underlying nonce-based AE scheme had a large ciphertext expansion,

it would lead to an amplified ciphertext expansion in the IM scheme.

A performance comparison for IM using AES-GCM and ChaCha20-Poly1305 can
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Nonce-based AE scheme Chunk length libInterMAC chunk length limit

AES-GCM < 236 − 25 232

ChaCha20-Poly1305 < 238 232

Table 7.1: The middle column contains derived chunk length restrictions for the
internal nonce-based AE schemes implemented in libInterMAC. The right-most
column shows the limit on the size of the chunk length implemented in libInterMAC.
All lengths are counted in bytes.

be found in Section 7.7. A comparison for IM when used with AES-GCM and

ChaCha20-Poly1305 to implement SSH encryption schemes can be found in Section 7.9.

7.5 libInterMAC Data Limits

When deriving data limits for libInterMAC, our starting point is the security proofs

of IM. They show that the underlying nonce-based AE scheme is the dominating

factor, and, informally, the only factor to consider when determining data limits for

libInterMAC. We, therefore, focus solely on the supported nonce-based AE scheme.

Furthermore, instead of deriving explicit data limits, we derive restrictions on a

number of parameters used as input to the nonce-based AE schemes, implicitly cap-

turing libInterMAC data limits. We first provide a brief overview of which restrictions

libInterMAC implements.

Table 7.1 contains a summary of chunk length restrictions for each supported nonce-

based AE scheme. libInterMAC adopts the conservative choice of restricting the

chunk length to (strictly less than) 232 for both nonce-based AE schemes. This size

seems sufficient and can be natively supported on many platforms. Table 7.2 (top)

contains a summary of the restrictions on the number of encrypted chunks as a

function of the chunk length when AES-GCM is used as the nonce-based AE scheme.

In this case, libInterMAC assumes a maximum attack probability of approximately

2−50. Since the attack probability increases with the number of encryption algorithm

invocations, a limit on the allowed number of encrypted chunks when using AES-GCM,

is also enforced, see Table 7.2 (bottom). There are no restrictions on the number

of encrypted chunks for ChaCha20-Poly1305. Derivations follow in Section 7.5.1

and Section 7.5.2.
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chunk length 27 28 29 210 211 212 213 214 2k

success prob.

2−60 231.5 230.5 229.5 228.5 227.5 226.5 225.5 224.5 238.5−k

2−50 241.5 240.5 239.5 238.5 237.5 236.5 235.5 234.5 248.5−k

2−40 251.5 250.5 249.5 248.5 247.5 246.5 245.5 244.5 258.5−k

libInterMAC
limit on # chunks 241 240 239 238 237 236 235 234 248−k

Table 7.2: Derived restrictions on the number of encrypted chunks as a function
of the attack success probability and chunk length for AES-GCM. The right-most
column shows the general formula for computing the restrictions on the number
of encryption chunks for different attack success probabilities. The bottom row
shows the limits on the number of encrypted chunks for different chunk lengths as
implemented in libInterMAC.

7.5.1 ChaCha20-Poly1305 Data Limit Analysis

ChaCha20 must not be used to encrypt more than 238 bytes under the same key-nonce

pair (k, nonce) because the block counter in the ChaCha20 block function is 4 bytes

long and ChaCha20 encrypts in 64-byte blocks. Since the nonce is incremented for

each processed chunk, the limit will only be reached if the chunk length is extremely

large: N + 1 ≥ 238.

The success probability of a forgery when using Poly1305MAC increases as the

plaintext size grows. Using the language of IM, this implies that the success probability

of a forgery increases as the chunk length grows. If we choose the chunk length as

N = 2k, forged messages are rejected with a probability close to 1− v · (2k + 1)/(2106)

even after authenticating 264 legitimate chunks and v forgery attempts [26].

[117] shows that that security degradation derived for ChaCha20 and Poly1305MAC

extends to the ChaCha20-Poly1305 construction. Because of the ChaCha20 estimate,

we require in libInterMAC that N + 1 ≤ 238 when ChaCha20-Poly1305 is chosen as

the internal nonce-based AE scheme. The Poly1305MAC estimate does not impose

any restrictions because the key-nonce input to ChaCha20-Poly1305 in libInterMAC

changes for each new message, and each message can consist of at most 232 chunks

because of the nonce construction.
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7.5.2 AES-GCM Data Limit Analysis

Deriving encryption limits for AES-GCM is somewhat involved. Below we give an

account of the relevant limits for AES-GCM as used in libInterMAC. AES-GCM can

encrypt at most 232 − 2 blocks of 24 bytes per AES-GCM key-nonce pair. This

limitation originates from the design of the AES-GCM encryption mode; the internal

block counter is 32-bits wide but is initialised to 1 and, in addition, one block is

used in conjunction with the output from GHASH to produce the MAC tag. As an

effect, the chunk length must be strictly smaller than 236 − 25 bytes. Similar to

ChaCha20-Poly1305, the authentication security of AES-GCM degrades as the chunk

length increases. Specifically, if the chunk length N is 2k blocks long (where one

AES-GCM block is 16 bytes wide), then a forgery attempt is rejected with probability

1− 2128−k [59].

From [104], we can extract further security degradation estimates for AES-GCM.

Firstly, we obtain an upper bound on the number of encryption invocations of

2(137−u)/2−k per key, when the block size is 128 bits, the attack success probability

for a chosen plaintext distinguishing attacker is 2−u, and the chunk length is N =

2k. Table 7.2 gives an overview of upper bounds for various choices of attack success

probability and chunk length. Secondly, we can extract a forgery bound of 2v · (2k−4 +

2)/2128, where v is the number of authentication attempts and the chunk length is

N = 2k. If the number of verification attempts is less than 260, then forged messages

are still rejected with a probability close to 1− 2−49.

When AES-GCM is chosen as the internal nonce-based AE scheme in libInterMAC, we

impose the chunk length restriction and the number of encrypted chunks restriction

presented in Table 7.1 and Table 7.2, respectively.

7.6 Side-Channels

In this section, we discuss side-channel attack vectors for IM and libInterMAC, with

a particular focus on the extent to which the passive and active boundary hiding

notions (which IM is proven to achieve) can be undermined by timing side-channels.

Removing such side-channels in our implementation libInterMAC turns out to be a

considerable challenge. The primary complicating factor is our desire to achieve
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active boundary hiding when also considering side-channel attacks. This goes further

than what the formal boundary hiding notion promises, because the formal model

does not consider side-channels, but only information that becomes visible to the

adversary via output from its encryption and decryption oracles (yet, recall that

even this information is sufficient to break boundary hiding for currently supported

SSH encryption schemes in OpenSSH, see Chapter 6). When also considering side-

channels as a possible attack vector, it becomes paramount that the execution time

of the decryption algorithm is independent of ciphertext boundaries; otherwise such

information could make it possible for an adversary to infer them.

We present the methods that libInterMAC uses to limit the scope for mounting such

side-channel attacks. However, we acknowledge that these methods are not a complete

solution. In particular, we do not achieve a full constant-time implementation.

In general, such an implementation would anyway require a close co-operation

between libInterMAC and any application-layer protocol implementation making use

of libInterMAC. This is similar to the situation that exists for the TLS 1.3 Record

Protocol, as pointed out in [119, Appendix E.3]. Furthermore, one should also consider

the analysis in Section 3.9 if deploying InterMAC: recall, a “reactive” application

cannot satisfy active boundary hiding because responses from the application delineate

ciphertext boundaries.

7.6.1 Constant-time Padding Removal

Recall that IM uses alternating byte padding in the last chunk of a message to bring

it up to the required chunk size. This padding is easy to remove during decryption,

simply by inspecting the bytes from right to left and removing them one-by-one

until a new byte value is encountered. (There is also a special case in IM because

of our use of a distinct value for the chunk delimiter byte when no padding was

needed.) However, this is not a constant-time approach, and a timing attack could

glean information about the lengths of messages by observing the execution time

of padding removal or of the complete decryption operation. As noted above, the

TLS 1.3 specification accepts the presence of a similar leakage in its record fragment

padding removal mechanism, choosing not to defend against it [119, Appendix E.3],

instead stating that: in general, it is not known how to remove all of these channels

because even a constant-time padding removal function will likely feed the content

into data-dependent functions.
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Yet to ignore this side-channel when we have targeted boundary hiding security

notions seems misguided, even if an attack based on this side-channel would not

violate the formal security definitions. For this reason, our padding removal code

in Figure 7.3 removes padding (and the chunk delimiter byte) in a constant-time

manner. This approach is applied to every chunk, whether it is the final chunk in a

message or not, in an effort to hide this information. However, as is evident from the

pseudo-code for IM in Figure 7.2, our overall decryption processing is not constant-

time. The main issue is the branch on the chunk delimiter byte when deciding

whether to perform message finalisation at line 19. Moreover, with our pseudo-code

for IM as written in Figure 7.2, a series of ciphertext fragments containing many

ciphertexts would take longer to process than a series of ciphertext fragments of the

same total length but containing only one ciphertext. This is because there would be

a greater number of message finalisation steps (lines 20-23 in Figure 7.2) in the latter

case. Of course, one could try to go further to ensure that the finalisation step is also

done in constant time on a per-chunk basis, making it independent of the number

of messages. We did not pursue this enhancement in libInterMAC, instead stopping

at the implementation of constant-time padding removal. The cost of adopting

constant-time padding removal is discussed and contrasted against the performance

of libInterMAC without constant-time padding removal in Section 7.7.

We have focused on padding removal in part because it is straightforward to make

addition of padding during encryption constant time. More importantly, though,

we believe that constant-timeness is less critical for encryption than for decryption

because a network attacker would not necessarily have a means of measuring encryp-

tion times, whereas a network attacker can measure decryption times via timing of

error messages, say. Of course, this situation would change when considering a local

attacker (with the ability to perform cache timing attacks, for example). In summary,

our focus was on addressing the most obvious questions about the potential for

constant-time implementations of IM and we acknowledge that our implementation

does not achieve constant-timeness throughout. Indeed, eliminating all side-channel

leakage that might permit undermining of the boundary-hiding security goal in

practice is a challenging future topic of research.
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7.6.2 Memory Allocation for InterMAC Decryption

Another situation where a timing-channel could arise in libInterMAC is in the imple-

mentation of the decryption buffer that stores the decrypted ciphertext. Recall that

when decrypting there is a priori no information revealing how long a ciphertext

is. This information is first learned when decrypting the last ciphertext chunk in a

ciphertext and inspecting the chunk delimiter byte. The decryption function must,

therefore, use a buffer that is large enough to store all the decrypted ciphertext

chunks until the entire ciphertext has arrived without knowing the final length of the

ciphertext. Below are various strategies for implementing such a buffer in C:

1. Start from an initial decryption buffer of some size s and expand the buffer if

necessary using an exponential smoothing approach. That is, if the buffer runs

out of memory, re-allocate the buffer (e.g. using the C-function realloc()) to

a total size of 2 · s. If the buffer runs out a memory again, expand the buffer

again to a total size of 22 · s, i.e. every time the buffers runs out of memory,

double the current available memory.

2. Same as (1) but only expand the buffer for a single decrypted chunk at a time.

That is, initially s = |decrypted chunk| and if the buffer runs out of memory

expand to a total size of s+ |decrypted chunk|.

3. Implement a buffer as a linked list of small buffers. Each buffer will have the

size of |decrypted chunk| that are linked as in a linked list.

4. Use a fixed-sized decryption buffer.

Strategy (1) is likely to be the most efficient strategy, balancing the memory require-

ment with the processing time needed to expand the buffer. However, the time it

takes to expand the available memory is dependent on the amount of memory copied

and the increase in memory size (at least when assuming use of realloc()). This

gives a potential for timing leakage, since the decryption time would depend on the

ciphertext boundaries.

Strategy (2) is similar to (1) and suffers from the same timing issue. In addition,

(2) requires a large number of memory expansions for large ciphertexts, which could

impact performance negatively.

Strategy (3) does not directly leak timing information through memory expansions

because the expansions are always of the same size and occurs in the same pattern
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for all ciphertext sizes. However, many applications do not natively support such

data structures and is it likely that the decrypted ciphertext must be copied to a

different data structure to be further processed in the application anyway. This

both decreases performance and can potentially leak timing information. The large

number of memory expansions needed can also negatively affect performance as in

the case of (2).

Strategy (4) does not have the problems arising in (1), (2) and (3). On the other

hand, (1), (2) and (3) all essentially support arbitrary length ciphertexts while (4)

does not. Moreover, using a fixed-size buffer imposes restrictions on the use of

libInterMAC that might prevent applications from making use of the library.

libInterMAC implements strategy 4, mainly because it is the simplest. In addition,

many applications, such as SSH, have a soft packet size limit that restricts ciphertext

sizes, making the flexibility offered by the other strategies less important. libInterMAC

can be custom-built to set the size of the decryption buffer to the desired size and

align with any further restrictions.

7.7 Performance Evaluation

The performance of libInterMAC primarily depends on the choice of the internal

nonce-based AE scheme and the choice of the chunk length; a faster scheme will also

result in better performance for libInterMAC.

The chunk length plays a more subtle role in the performance of libInterMAC. Recall

from Section 7.2 that if the chunk length is N , the message is split into chunks of size

N and a single byte is appended to each chunk before the encryption step using the

internal nonce-based AE scheme. The number of AES/ChaCha20 operations needed to

encrypt an L-byte message for a chunk length N is then equal to dL/Ne·d(N+1)/Be,
where B = 16 for AES and B = 64 for ChaCha20. To minimise the number of

operations, it would seem beneficial to set N = B − 1 mod B, so that the term

d(N + 1)/Be does not involve rounding up; on the other hand, this would imply a

smaller N , increasing the size of the term dL/Ne. It is therefore not immediately

obvious what the best choice of N is, given B and a specific message length L.

To illustrate the behaviour of the above formula, we assume that AES-GCM is used

as the internal nonce-based AE encryption scheme. We focus on comparing the
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Figure 7.5: Number of AES operations needed to IM-encrypt a message as a function
of the chunk length, with the choice of AES-GCM as internal nonce-based AE scheme.
Plots are given for 4 different message lengths: 1KB, 10KB, 100KB and 1MB.

behaviour for two sets of chunk lengths: one set that aligns on the block size boundary

and one set that aligns on the block size boundary after the addition of the chunk

delimiter. First we plot the number of AES operations needed as a function of the

chunk length, where the chunk length is a power of two or a power of two minus 1,

see Figure 7.5. We also plot the number of AES operations needed as a function of

the message length for chunk lengths 28 − 1, 28, 29 − 1, 29, 210 − 1, 210, 211 − 1 and

211, see Figure 7.6.

Choosing the chunk length to be N = 0 mod 16 (red bars in charts) implies that an

extra AES computation must be performed for each chunk because the extra byte

appended to the chunk pushes the input to the encryption step past the 16-byte

block size boundary. When choosing the chunk length to be N = 15 mod 16 (blue

bars in charts) the input to the encryption step aligns with the 16-byte block size,

but there will be more chunks to process for long messages. The effect on the number
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Figure 7.6: Number of AES operations needed to IM-encrypt a message as a function
of the message length, with the choice of AES-GCM as internal nonce-based AE
scheme. Plots are given for 8 different chunk lengths: 28 − 1, 28, 29 − 1, 29, 210 − 1,
210, 211 − 1 and 211.

of AES computations is particularly visible when the chunk length is much smaller

than the message length, see charts for message lengths 10KB, 100KB and 1MB

in Figure 7.5. As the chunk length grows and the ratio between the message length

and the chunk length becomes smaller, the cost between choosing N = 0 mod 16 and

N = 15 mod 16 evens out and, eventually, shifts in favour of the former.

Figure 7.6 indicates that choosing the chunk length N = 0 mod 16 is better when

the chunk length is close to the message length and that the cross-over (the point

at which N = 15 mod 16 becomes the better choice) happens when the message

length is significantly larger than the chunk length. These observations agree with

the observations from Figure 7.5.

From a security perspective choosing the chunk length close to the message length

decreases DoS resistance. By taking a small performance hit, in terms of the
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number of AES operations, it is possible to significantly lower the chunk length and

thereby increasing the DoS resistance. However, there are other costs associated

with decreasing the chunk length. We will further investigate these costs below and

in Section 7.9.

To evaluate the practical performance of libInterMAC, we measured the number of

clock cycles used to initialise (im_initialise()), encrypt (im_encrypt()) and decrypt

(im_decrypt()). Figure 7.8 shows the number of clock cycles per byte when encrypting

files of size 1KB, 8KB, 15KB, and 50KB with libInterMAC, when either AES-GCM or

ChaCha20-Poly1305 is used as the internal nonce-based AE scheme. Figure 7.9 shows

the corresponding figures for decryption. These measurements were performed on a

dedicated Amazon Web Services (AWS) EC2 m4.large instance which runs Linux 4.14

with an Intel Xeon E5-2676 2.4 Ghz CPU containing the AES-NI instruction set and

the CLMUL instruction set. The number of clock cycles for initialise remains constant

at approximately 366k clock cycles over both internal nonce-based AE schemes and

all chunk lengths, and is therefore not depicted.

We can make a number of observations from these measurements. Firstly, the

number of clocks per byte is between 5 and 50 times higher when the internal

nonce-based AE scheme is ChaCha20-Poly1305 compared to AES-GCM. The main

reason is the availability of AES-GCM-specific CPU instructions on the machine used

for benchmarking. Secondly, the closer the chunk length is to the actual message size,

the more efficient IM is. This is because the message is split into fewer chunks, so that

processing the message avoids multiple executions of glue code. Thirdly, there is a

noticeable difference between the performance of encryption and decryption for both

choices of the internal nonce-based AE scheme. The discrepancy arises because of

the constant-time padding removal code used in decryption, which is forced to touch

every byte of every chunk. The relative discrepancy when using ChaCha20-Poly1305

is less significant only because ChaCha20-Poly1305 is much slower than AES-GCM

on the platform where the measurements were performed. The performance cost

of using constant-time padding removal in libInterMAC is illustrated in Figure 7.7,

which compares this option with decryption using simple non-constant-time padding

removal code.
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Figure 7.7: Comparing the cost of decryption using constant-time and non-constant-
time padding removal in libInterMAC, with AES-GCM and ChaCha20-Poly1305 as
internal nonce-based AE schemes. The constant-time option involves a significant
performance penalty, especially for AES-GCM.

7.8 IM-based SSH Encryption Scheme in OpenSSH

In this section, we extend the widely-deployed SSH implementation OpenSSH with

InterMAC-based SSH encryption schemes. In the following, we will denote this

extension of OpenSSH as IMOpenSSH. The IM-based SSH encryption schemes are

obtained using libInterMAC. Using IM-based SSH encryption schemes is as easy as

using existing OpenSSH SSH encryption schemes and requires no special knowledge

about IM apart from making a choice of the chunk length and the internal nonce-based

AE scheme. The code for IMOpenSSH is available at [4].

We then report performance measurements on IMOpenSSH for the specific use-case

of securely transferring data files between two machines using SCP (commonly an

abbreviation of Secure Copy Protocol), a data transfer protocol which builds on SSH.
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We have chosen SSH because Chapter 6 shows that no existing SSH encryption

schemes satisfy all 4 security notions in the ciphertext fragmentation framework.

SCP uses the BPP of SSH as transport protocol. It is therefore natural to use this

protocol to perform performance tests. libInterMAC could be used to implement

IM-based schemes in other protocols e.g. TLS. We restirct our attention to SSH to

stay in-line with the theme of this thesis.

7.8.1 Implementation Details

In this section we highlight the most important implementation choices that were

made during the integration of libInterMAC with OpenSSH.

Deviations from RFC 4253

Contrary to OpenSSH’s native SSH-AES-GCM, SSH-Generic-EtM and

SSH-ChaCha20-Poly1305 schemes discussed in Section 2.4.2, it is possible to directly

apply IM to the entire encryption scope of an SSH packet. This is because the length

field is not needed to locate the end of a ciphertext. However, applying IM runs

into incompatibilities with the mandatory SSH padding. As described earlier, the

maximum amount of padding allowed by the RFC is 255 bytes. But IM requires that

the underlying plaintext be padded to be a multiple of the chunk length (plus one).

Enforcing the RFC requirement would restrict the chunk length to be strictly less

than 255. In addition, the SSH padding would be redundant when used with IM, as

IM already adds padding up to the chunk boundary.

We chose to deviate from the SSH BPP packet format by removing the following

fields: packet length field, padding length field and padding field. Removing these

fields reduces the scope of encryption to just the payload. This approach was chosen

for several reasons. Firstly, it reduces complexity by removing fields that no longer

serve any purpose. Secondly, it removes the need to add two forms of padding.

Thirdly, the encrypted packet length field has been used several times as an attack

vector against the SSH protocol. Removing this field completely nullifies previous

attacks and reduces the overall attack surface of the scheme. On the other hand,

deviation from the SSH packet format might make it more difficult to get IM adopted

in practice. However, we believe the positive aspects outweigh the negative aspects

here.
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Another requirement in RFC 4253 is to explicitly include the sequence number in

the computation of the authentication tag. The OpenSSH SSH-AES-GCM scheme

already deviated from this requirement: it instead implicitly includes the sequence

number via the nonce (it is, up to an additive constant, just the low 32 bits of the

AES-GCM invocation counter). IM behaves in a similar way: the IM message counter

is incorporated into the nonce of the underlying nonce-based AE scheme, and is just

an additive offset of the SSH sequence number as a consequence of how these are

initialised and updated in an SSH connection.

Identifiers for IM-based SSH schemes

Standard SSH encryption schemes are built from an encryption scheme and a MAC

algorithm that are negotiated separately during the SSH handshake protocol. The

OpenSSH scheme SSH-AES-GCM, which simultaneously provides encryption and

authentication, is negotiated as an encryption scheme and the MAC part of the SSH

negotiation is simply ignored. All encryption schemes and MAC algorithms have

named identifiers defined specifically for use in SSH. These identifiers also encode

information about the key size and other parameters. The SSH negotiation process

does not support negotiating additional metadata. This means that it is not possible

to dynamically negotiate a chunk length for IM schemes during the SSH handshake.

Instead, to fully specify an IM-based scheme in the SSH handshake context, it is

necessary to define a new identifier for each different chunk length. In addition, the

identifier must encode information about which internal nonce-based AE scheme is

to be used in IM. In IMOpenSSH, identifiers for IM schemes are strings resulting

from concatenating the following substrings (in the order appearing in the list):

- The string "im-"

- One string from the following set: {"aes128-gcm-","chacha-poly-"}

- One string from the following set:

{"127","128","257","256","511","512","1023","1024",
"2047","2048","4095","4096","8191","8192"}

The first string identifies the use of an IM-based scheme. The second set of strings

specifies the internal nonce-based AE scheme, while the third set specifies the chunk

length of the negotiated IM scheme.
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Dynamic negotiation could be introduced during key exchange by defining a new SSH

key exchange method that, in addition to carrying out the shared secret establishment,

also includes methods to dynamically negotiate the chunk length and internal nonce-

based AE scheme. However, this would drastically increase the burden of integrating

IM-based SSH encryption schemes, which is why we have chosen our initial approach

of statically negotiating these parameters.

Choice of IM Parameters a and b

Recall, that a is the number of bits in the IM message counter and b is the number

of bits in the IM chunk counter, and these must sum to 96; libInterMAC hard-codes

(a, b) = (64, 32). However, depending on context, it might be beneficial to change

these parameters. For example, if a� b then the number of messages per-key that

could be securely encrypted would increase, which could be useful when encrypting

many messages with few chunks. Note, changing the values of a and b might change

the data limits per key, derived in Section 7.4.

7.9 Performance of IM for Secure File Transfers

SCP (Secure Copy Protocol) is a secure protocol to transfer data between two hosts.

It is based on SSH and inherits the available choice of cryptographic algorithms from

SSH. OpenSSH implements SCP and our integration of libInterMAC into OpenSSH

allows SCP to make use of IM schemes in a seamless manner.

We used the OpenSSH implementation of SCP to carry out two sets of experiments

measuring the performance and data-usage of native OpenSSH schemes and IM

schemes. Specifically, we set up a client and server on two different AWS EC2

instances. For the first set of experiments, a 100MB file was transferred between

two t2.nano AWS EC2 instances located in two different regions (EU London and

US Oregon), see Figure 7.10. For the second set of experiments, a 50MB file

was transferred between two m4.large AWS EC2 instances located in two different

availability zones in the EU London region, see Figure 7.11. For both experiments,

we plot the MB/s rate (computed by taking the ratio of the size of the file transferred

and the median wall-time) and the median of the total volume of ciphertext. We

do this for a number of IM schemes, two OpenSSH schemes based on authenticated
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symmetric encryption schemes (abbreviated OpenSSH AE schemes in the sequel)

and an OpenSSH scheme based on CBC-mode (abbreviated OpenSSH CBC-mode

scheme, in the sequel). The measurements were performed on machines running

Linux 4.14 with an Intel Xeon E5-2676 2.4 Ghz CPU having the AES-NI instruction set

and the CLMUL instruction set.

The IM schemes suffer from substantial ciphertext expansion – we saw a 10%-30%

increase compared to the raw file size. The amount of ciphertext expansion depends

on how the chunk length aligns with the size of the data segments fed by the SCP

application to the transport layer in SSH. The size of data segments depends on the

platform and varies during file transfers, hence it is difficult to pick an optimal chunk

length at the outset.

Figure 7.10 shows the results of experiments done between data centres in different

regions, i.e. in a WAN setting. It indicates a relationship between the amount of

ciphertext expansion and the throughput. The impact on throughput of increased

ciphertext expansion on performance is low for IM schemes with a chunk length of

512 and 1024, while it tops out at around 15%-20% for IM schemes with a chunk

length of 8192 (as compared to the best OpenSSH AE schemes). The OpenSSH AE

schemes aes128-gcm@ and chacah20-poly1305@, and the OpenSSH CBC-mode scheme

3des-cbc+hmac-md5 all have similar throughput and similar ciphertext expansion. The

reason that the CBC-mode scheme achieves the same throughput as the computa-

tionally faster AE schemes is that, in the WAN setting of this experiment, they are

all able to consume all the available network bandwidth and are therefore not limited

by computational performance.

The results shown in Figure 7.11 were obtained on a network with a larger bandwidth

capacity, effectively a LAN setting. This gives further insight into computational

performance differences for each scheme and the impact on throughput. Some of

the IM schemes incur significant performance hits for some chunk lengths. For

example, if ChaCha20-Poly1305 is chosen as the internal nonce-based AE scheme,

then the best performing IM scheme suffers a 70% performance hit when compared

to OpenSSH’s native SSH-ChaCha20-Poly1305 scheme. The performance difference

between IM schemes using AES-GCM as the internal symmetric encryption scheme

and OpenSSH’s native SSH-AES-GCM scheme is less pronounced, but the IM schemes

still suffer from at least a 40% decrease in performance. Furthermore, the OpenSSH

SSH-AES-GCM scheme also consumes all the available bandwidth in this experiment,
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and so one could expect that the difference in performance would be even greater on

a network with yet higher bandwidth.

IM schemes with chunk lengths N ∈ {127, 257, 511, 1023, 2047, 4095, 8191} are not

displayed on the charts in Figure 7.10 and Figure 7.11 because they perform similarly

to the schemes with chunk length 1 greater. In view of the experiments reported

for libInterMAC in Section 7.7, one might expect a difference. The reason there is

not a difference is that the sizes of data segments fed by the SCP application to the

transport layer in SSH are badly aligned with both choices of chunk length. Indeed,

if the chunk length were chosen carefully, is it likely that an increase in performance

could be obtained for the IM schemes.
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Figure 7.8: Performance measurements (lower is better) of the encrypt function
(im_encrypt()) in libInterMAC for a number of chunk lengths and message lengths.
Each chart shows the number of clock cycles per byte using either AES-GCM (left
chart) or ChaCha20-Poly1305 (right chart) as the internal nonce-based AE scheme.
The number of clock cycles per byte, for each combination of chunk length and
message length (of size 1KB, 8KB, 15KB or 50KB, as indicated by four distinct label
colors/patterns), is computed by taking the minimum of 25 independent averages
where each average is calculated over 100 samples. AES-GCM is implemented using
AES-NI and CLMUL instructions, while ChaCha20-Poly1305 is done purely in software
(cf. Section 7.4). Some bars for the 1KB message category are truncated to increase
readability; Left chart: the value for a chunk length of 8191/8192 is approximately
10 cycles/byte. Right chart: the value for chunk lengths of 4095/4096 or 8191/8192
are approximately 140 cycles/byte and 270 cycles/byte, respectively.
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Figure 7.9: Performance measurements (lower is better) of the decrypt function
(im_decrypt()) in libInterMAC for a number of chunk lengths and message lengths.
Each chart shows the number of clock cycles per byte using either AES-GCM (left
chart) or ChaCha20-Poly1305 (right chart) as the internal nonce-based AE scheme.
The number of clock cycles per byte, for each combination of chunk and message length
(of size 1KB, 8KB, 15KB or 50KB, as indicated by four distinct label colors/patterns),
is computed by taking the minimum of 25 independent averages where each average
is calculated over 100 samples. AES-GCM is implemented using AES-NI and CLMUL

instructions, while ChaCha20-Poly1305 is done purely in software (cf. Section 7.4).
im_decrypt() uses constant-time padding removal, cf. Section 7.6.1. Some bars for the
1KB message category are truncated to increase readability. Left chart: the value for
chunk lengths of 4095/4096 or 8191/8192 are approximately 55 cycles/byte and 115
cycles/byte, respectively; Right chart: the value for chunk lengths of 4095/4096 or
8191/8192 are approximately 180 cycles/byte and 360 cycles/byte, respectively.
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Figure 7.10: Measurements for InterMAC-based encryption schemes, OpenSSH AE-
based encryption schemes and the OpenSSH AES-CBC encryption scheme using
the OpenSSH version of the data copy tool SCP between two t2.nano AWS EC2
instances in two different regions. “im-Y -X” denotes an InterMAC-based scheme
being used with Y as the internal nonce-based AE scheme, and with chunk length
X bytes, @ is short-hand for @openssh. (left chart) Throughput in MB/s (higher
is better); median over 100 samples for a 100MB file transfer for each encryption
scheme. (right chart) Total volume of ciphertext bytes sent on the wire (lower is
better); median over 100 samples for a 100MB file transfer for each SSH encryption
scheme.

Figure 7.11: Measurements for InterMAC-based encryption schemes, OpenSSH AE-
based encryption schemes and the OpenSSH AES-CBC encryption scheme using the
OpenSSH version of the data copy tool SCP between two dedicated m4.large AWS
EC2 instances in two different availability zones. “im-Y -X” denotes an InterMAC-
based scheme being used with Y as the internal nonce-based AE scheme, and with
chunk length X bytes, @ is short-hand for @openssh. (left chart) Throughput in
MB/s (higher is better); median over 100 samples for a 50MB file transfer for each
encryption scheme. (right chart) Total volume of ciphertext bytes sent on the wire
(lower is better); median over 100 samples for a 50MB file transfer for each SSH
encryption scheme.

178



Chapter 8

Concluding Remarks

In this chapter, we briefly conclude and touch on avenues for future work.

In Chapter 4, we show that there has been an increase in the diversity of SSH

encryption schemes preferred by SSH servers. Specially, we saw a 27.1% increase of

unique SSH encryption schemes preferred by at least one SSH server in the 2019

scan compared to the 2016 scan. We argued that such diversity is not necessarily

desired. On the positive side, there has been a shift in the most preferred SSH

encryption scheme. In 2016, the most preferred SSH encryption schemes were a

combination of CTR-mode based encryption algorithms and HMAC based MAC

algorithms. However, in 2019, the most preferred SSH encryption scheme has shifted

to the native AE scheme SSH-ChaCha20-Poly1305, that provably has better security

properties than any other available SSH encryption scheme, as we prove in Section 6.3).

This scheme is now the default choice on about half the SSH servers we found in our

2019 scan. We attribute a part of this development to the stronger default algorithm

choices implemented by OpenSSH.

Our data also show that the majority of SSH software in use is trailing behind their

newest versions by at least three years. Since SSH software is often installed on

devices that are hard to upgrade, this situation is predictable. On the positive side,

we saw an improvement in the software age between our 2016 and 2019 scans, seeing

newer software being used in the latter.

In the future, it would be interesting to gather more regular statistics on SSH servers

and their use of SSH encryption schemes. Collecting more periodic data would enable

a more precise study of how the SSH ecosystem evolves when newer software versions

are released or when a vulnerability is discovered.

In Chapter 5, we presented three new attacks against SSH encryption schemes in

OpenSSH that use CBC-mode. These new attacks affect all versions above version
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5.3 of OpenSSH. We also showed that the vulnerability exploited in the Albrecht-

Paterson-Watson attack also exists in Dropbear, and affects all of its versions. In the

2019 scan presented in Chapter 4, we observed that a number of SSH servers still

preferring CBC-mode based SSH encryption schemes. While the number of servers

preferring CBC-mode is relatively small compared to the total number of servers,

there are still approximately 400,000 SSH servers that are likely to be vulnerable

to one of the three new attacks or the older Albrecht-Paterson-Watson attack. In

addition, the number of vulnerable servers have increased in the 2019 scan compared

to the 2016 scan (factoring in the lower number of Dropbear servers found in the

2019 scan).

Section 5.8 highlights that completely mitigating the attack vector enabling these

attacks, would be both complex and impact performance negatively. We, therefore,

recommend that the best choice is to disable and discourage the use of CBC-mode SSH

encryption schemes and, in the long run, completely remove support for CBC-mode

in SSH.

In Chapter 6, we give a formal security analysis for the most important options

currently implemented in OpenSSH: SSH-ChaCha20-Poly1305, SSH-Generic-EtM and

SSH-AES-GCM. Our results are summarised in Table 6.1. Our proofs cover the

majority of the most used SSH encryptions schemes in use by SSH servers on the

Internet. In particular, we prove security properties for the most popular SSH

encryption scheme SSH-ChaCha20-Poly1305. It is notable that none of the analysed

schemes possess all of the security properties that one might consider desirable for

SSH, namely confidentiality and integrity against an adversary with access to a

fragmented decryption oracle; boundary hiding against active attacks, and; resistance

to denial-of-service attacks. We attempted to improve this situation in Chapter 7.

An avenue for future work is to attempt to prove concrete security properties for

SSH encryption schemes that use the original SSH method of Encrypt-and-MAC.

Such proof was given earlier by Paterson and Watson [114] for CTR-mode SSH

encryption scheme. However, their proof was given in their ad-hoc SSH-specific

security model. It would be interesting to attempt to carry over their results to the

ciphertext fragmentation model.

In Chapter 7, we introduced, analysed, implemented, and measured the performance

of the modified InterMAC scheme IM. Our work brings IM, with its enhanced
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security properties, to the point where it could be adopted as an encryption scheme

in SSH. Along the way, we have addressed many specific challenges that arise

when transforming cryptographic schemes and their security properties from paper

into performant code. We hope that our reference implementations libInterMAC

and IMOpenSSH serve as proof that IM is viable in practice and that IM-based

SSH encryption schemes in the future can be made fully available in SSH, and

other applications, alongside existing options. It would be beneficial to carry out

further performance testing across a wider range of applications (including interactive

terminal sessions) and network conditions. In particular to investigate in more detail

the effect of message sizes as chosen by the application layer and its interaction with

the chunk length parameter N of IM.

We have provided an extensive discussion of potential timing side-channels in our

library libInterMAC, and have attempted to remove the most egregious such side-

channels via a constant-time padding removal routine. We have evaluated the

performance impact of this code. We have also discussed how these side-channels

relate to the BH-CPA and BH-sfCFA security notions. However, more can still be

done here, including writing a strictly constant-time implementation of the entire IM

decryption routine and evaluating any additional performance impact that this has. A

challenging goal would be to obtain formal verification that such IM implementation

is indeed constant-time, in the spirit of [8, 7]. It would also be of interest to more

deeply explore how to integrate timing side-channels into the existing formal security

models, as well as building formal models of what we have called reactive applications

and using them to explore the limits of boundary hiding (cf. Section 3.9).

Also on the theoretical side, there has been much recent interest in obtaining security

bounds for AE and AEAD schemes in the multi-user setting [25, 103, 82]. It would

be interesting to see how these results can be broadened to the more complex

setting of schemes supporting ciphertext fragmentation. It will also be interesting

to investigate the security of IM-like schemes in the new frameworks of [125, 53]

that were introduced for analysing more complex secure channel protocols like those

employed in SSH.

181



Bibliography

[1] Farzaneh Abed, Scott R. Fluhrer, Christian Forler, Eik List, Stefan Lucks,

David A. McGrew, and Jakob Wenzel. Pipelineable on-line encryption. In

Carlos Cid and Christian Rechberger, editors, Fast Software Encryption - 21st

International Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised

Selected Papers, volume 8540 of Lecture Notes in Computer Science, pages

205–223. Springer, 2014.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Simson L. Garfinkel, Doowon

Kim, Michelle L. Mazurek, and Christian Stransky. Comparing the usability of

cryptographic APIs. In 2017 IEEE Symposium on Security and Privacy, pages

154–171. IEEE Computer Society Press, May 2017.

[3] Martin R. Albrecht, Torben Brandt Hansen, and Kenneth G. Paterson. libIn-

termac. https://github.com/himsen/libintermac, 2018. Accessed: 26/09/2019.

[4] Martin R. Albrecht, Torben Brandt Hansen, and Kenneth G. Paterson.

OpenSSH extended with InterMAC-based encryption schemes. https://

github.com/himsen/intermac-openssh-portable, 2018. Accessed:

27/09/2019.

[5] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext

recovery attacks against SSH. In 2009 IEEE Symposium on Security and

Privacy, pages 16–26. IEEE Computer Society Press, May 2009.

[6] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the

TLS and DTLS record protocols. In 2013 IEEE Symposium on Security and

Privacy, pages 526–540. IEEE Computer Society Press, May 2013.
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