
Parallel implementation of the Sieve of
Eratosthenes

Torben Hansen, F120116

Utrecht University - Institute of Mathematics

This paper concludes the first project in the Mastermath course Parallel al-
gorithms and concerns the Sieve of Eratosthenes. The basic sequential version of
the Sieve of Eratosthenes is simple to implement and very efficient; complexity is
O(n ln lnn) with n being the input number. With various improvements the hidden
constant factor can be made pretty small. Parallelising the Sieve of Eratosthenes
adds intricacy to the code but may amount into a more efficient program. In this
paper we will discuss and implement a parallel versions using the BSP scheme. The
Parallel version presented have BSP cost

O

(
n ln lnn

2p + p+ g(p− 1)
√
n

ln(n) + 4l
√
n

ln(n)

)
.

Experiments in section 3 show that for small bit size input there is no significant
improvements to gain by increasing the number of processors. A detailed study of
the case p = 8 shows that the expected execution times is almost at least 2.5 times
bigger than the actual running time at Huygens for numbers that are smaller than
31 bit.

Throughout this paper we will use SoE as an abbreviation for Sieve of Eratos-
thenes and when we say that some data is located at a processor i we really mean
that the data is located on the memory that processor i has direct access too.

Enjoy.

Who would have imagined that something as straightforward
as the natural numbers, could give birth to anything

so baffling as the prime numbers?
— Ian Stewart (1945–)

1

Contents

1 Sequential Sieve of Eratosthenes 3
1.1 Description sequential version . 3
1.2 Complexity . 4

2 Parallel Sieve of Eratosthenes 5
2.1 Distribution and communication . 5
2.2 Description parallel version . 7
2.3 BSP cost . 11

3 Benchmark tests 12
3.1 Benchmark . 12
3.2 Results/experiments . 12

A Sequential Soe 17

B Parallel Soe 19

2

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

1 Sequential Sieve of Eratosthenes

We begin by introducing the sequential version of the SoE and analyse the complex-
ity in the RAM model. We also present an implementation of the sequential SoE
written in C.

1.1 Description sequential version

As mentioned the SoE is very simple in its basic form and works as following: Start
with the integers from 2 to n. The number 2 is a prime; cross out all larger multiples.
The next smallest remaining number is 3, which is a prime; cross out all multiples of
3. The next smallest remaining number is 5, which is prime; cross out all multiples...
Etc. Algorithm 1.1.1 displays the algorithm in pseudo code.

Algorithm 1.1.1 Sieve of Eratosthenes
Input: Integer n with n ≥ 2.
Output: List B with the primes from 2 to n.
Let A be a bit array with length n. Let B be a list. Assume for simplicity that
the index in A starts at 1 (this is the only place we assume this. The assumption
is easy fixed in practice!).
Initialize all elements in A to 1 except A[1] which is set to 0.
for i = 2→ b

√
nc do

if A[i] == 1 then
B.add(i)
p = i2

while p ≤ n do
A[p] = 0
p = p+ i

end while
end if

end for
for i = b

√
nc+ 1→ n do

if A[i] == 1 then
B.add(i).

end if
end for

Below we add additional points regarding algorithm 1.1.1.

− If one only want to count the number of primes in the interval [2, n] one could
do without the list B in the algorithm.

3

− We may stop sieving when we reach b
√
nc. This is an easy lemma: Assume

not all composite numbers has been crossed out. Take one, say x, with x ≤ n.
x must have at least two different primes, say p and q, that must satisfy
p, q >

√
n otherwise x would have been crossed out. But this implies there

exists x′ ≥ 1 such that x > x′
√
n
√
n = x′n - contradiction.

− We may start sieving with a new prime, say p, from the square of that prime
because all numbers 2p, 3p, . . . , δp with δ maximal integer such that δp < p2,
has been crossed out by other primes smaller than p (because δ < p).

− An easy way to improve algorithm 1.1.1 is to only represent odd numbers. This
can be done because the prime 2 will cross out all even numbers in the first
iteration. This would save a factor of 2. We do this in our C implementation.

In appendix A there is C implementation of the sequential SoE. Essentially this
implementation does not exactly output the same as algorithm 1.1.1 since dynamical
array allocations is not a part of the standard library in C we instead represent 2
and all odd integers from 3 to n. Output is the number of primes below n. With
this representation and the number of primes below n it is easy to allocate an array
with the size of the number of primes and run through the array containing the
numbers from 3 to n and pick out the primes. This wont change the asymptotic
time of algorithm 1.1.1.

1.2 Complexity

The analysis of algorithm 1.1.1 is not that hard. We will use the following result,
which proof has been omitted.

Proposition 1.2.1. For the reciprocal prime sum we have ∑p≤n
1
p

= ln lnn+O(1).

A proof strategy for proposition 1.2.1 could be first to show that ∑p≤n
lnp
p

=
lnn + O(1) and then apply partial summation using the function f(t) = 1

ln t with
coefficient an = ln q

q
if n equals the a prime q and an = 0 otherwise (i.e. when n is

not prime).
Algorithm 1.1.1 starts with an initialization which takes n steps to perform and

the algorithm ends with a pass through the “rest” of array A. The last pass takes
n − b

√
nc because we are only doing constant work in each step. What is left, is

to figure out the complexity of the main for-loop. For each i we proceed to the

4

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

while-loop if and only if i is a prime. If i is prime we go trough the while-loop at
most n

i
times. The amortized time for the main-loop is therefore

O

n− π(n) +
∑

p≤b
√
nc

n

p

 = O

n− π(n) + n
∑

p≤b
√
nc

1
p


= O

(
n− π(n) + n · ln lnb

√
nc
)

= O (n · ln lnn) .

using proposition 1.2.1. Letting TSoE denote the running time for algorithm 1.1.1
we have

TSoE = O
(
n+ n · ln lnn+ n− b

√
nc
)

= O (n · ln lnn) .

Even though ln lnn goes to infinity it does so extremely slow! Actually ln lnn < 10
for all n < ee

10 ≈ e2206 a huge number! Also notice that the amortized work per
integer between 1 and n, is astonishing O(ln lnn) - practically constant.

The above argument is basically an estimate of how many cross outs we are
doing during a run with the algorithm. Hence the estimate can be thought of as
being an upper bound of how many cross outs we need doing a run and in this line of
thinking the complexity relies on how good we are at avoiding multiple cross outs of
numbers. Looking at the estimates above and the (rather) basic C implementation
one see that a good implementation should do at most 1

2n · ln lnb
√
nc cross outs.

2 Parallel Sieve of Eratosthenes

In this chapter we develop a parallel version of the SoE using the Bulk Synchronous
Parallel (BSP) model. For the implementation we are using BSPlib with C. We
assume that the result (either number of primes below some limit or the primes
themselves below some limit) is needed by every processor.

2.1 Distribution and communication

The first thing we must settle on is how to distribute the sieving array over the
processors. When doing so we must take into account which distribution entails
the least amount of communication and the best work and data load between all
processors. Also we want an efficient way of initializing the distribution. We consider
two different ways of distributing the sieving array; cyclic and block distribution. To

5

describe both, say we want to partition the array A[0, 1, . . . , n− 1] with A[i] = i+ 1
for 0 ≤ i < n, using p processors P (0), P (1), . . . , P (p− 1).

Cyclic This distribution is defined by the map ai 7→ P (i mod p) for 0 ≤ i < n.
That is, processor s contain indexes s + jp for j = 0, 1, 2, . . . , bn−s

p
c. Below is an

example with n = 20 and p = 3.

1 4 7 10 13 16 19 2 5 8 11 14 17 20 3 6 9 12 15 18

where the array with 1, 4, 7, 10, 13, 16, 19 is contained in processor 0 etc. The benefit
of this distribution is that we get a perfect data load over all processors with almost
no effort and it is easy to determine which processor is the owner of a specific
element. The backside of this distribution is that the workload may be horrible.
In the above example one may notice that processor 2 contains only 1 prime while
processor 1 contain 4 primes. This work load bias can be much bigger when n is a
bigger number. Another problem is the need for a larger communication when the
next sieving prime is to be determined. Every processor needs to send his candidate
of a sieving prime to all other processors.

Block The block distribution solves the two problems above but is instead more
complicated to work with. There are several ways to deploy the block distribution.
The naive way is to assign dn

p
e to each processor. But this may again give a load

bias between the first p − 1 processors and the last processor. Instead we use the
following partition: Processor P (s) contains indexes from bsn

p
c to b(s + 1)n

p
c − 1.

In the example from above we get the partition

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

With this distribution we get block lengths of either bn
p
c or bn

p
c+ 1.

We also use the basic reduction of only representing odd numbers. That is, since
2 will cross out all even numbers we don’t need to represent them. That is, for
some limit n we only represent the odd numbers from 3 to n or n − 1 depending
on whether n is odd or even respectively. We therefore need space for only bn−1

p
c

elements. Each local sieving array have size
⌊
(s+ 1)bn−1

2 c/p
⌋
−
⌊
sbn−1

2 c/p
⌋
.

When in processor s consider the array contained in there and pick an index i
in that array. We must know which odd integer this index corresponds to. This is
done by the map (s, i) 7→ bsn

p
c+ 2(i+ 1) + 1. Given the processor number s we can

also find the endpoints of the interval containing the odd integers on that particular

6

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

processor.

Left endpoint :
⌊
s
bn−1

2 c
p

⌋
7→ 2

⌊
s
bn−1

2 c
p

⌋
+ 3

Right endpoint :
⌊
(s+ 1)

bn−1
2 c
p

⌋
− 1 7→ 2

⌊
(s+ 1)

bn−1
2 c
p

⌋
+ 1

Compared to the naive method the former method provide a more smooth distri-
bution but it does require some extra computing power to manage. Benefits are
two-fold though; Lower memory use and faster execution.

Communication of sieving prime To avoid a lot of broadcasting between
processors when finding the next sieving prime we enforce an invariant; processor
0 must always contain all elements up to at least

√
n. By doing this we can use

processor 0 to find all sieving primes without the need of first finding a candidate
in all processors and broadcast all candidates. This invariant might imply that we
need to reduce the number of processors that can be used. Say the user request P
processors. We are then after the maximal p′ such that

1 ≤ p′ ≤ P, b
√
nc ≤

⌊
bn−1

2 c
p′

⌋
− 1

Set p′ =
⌊
bn−1

2 c/ (b
√
nc+ 1)

⌋
. Then if p′ < P we need to reduce to only using

p′ processors, and if p′ ≥ P we can stick with the choice made by the user. It is
worth noticing that a situation where we need to restrict to a smaller number of
processors is not likely to occur when n is big (which is the case most people deal
with). For example when only n > 10000 we need more than 100 processors before
any restriction will take place.

There is a way of avoiding all communication during the sieving. That is to use a
the sequential SoE on input

√
n finding all primes from 2 to

√
n and thereafter sieve

using the primes just found. The advantage of this approach is, that one don’t need
to start up communication π(n) times but can do with one start up. The downside
is that you know need to do some more initial work in the beginning.

2.2 Description parallel version

Is this section we present the implementation. We give the pseudo code which we
in section 2.3 will use to analyse the cost with respect to the BSP cost model. For
the full implementation we refer to appendix B. Below we describe more detailed
how we set of the distribution

7

Setup We imagine we have a bit array A of length bn−1
p
c, representing the odd

integers from 3 to n or n−1 depending on whether n is odd or even. A is initialized
with ones. Let i be an index of A. Then we use the map i 7→ 2(i + 1) + 1 to map
each index in A to an unique odd integer. On each processor P (s) we allocate an
array as described in section 2.1. For any processors s the index in each allocated
array now uniquely corresponds to one of the odd integers from 3 to n (or n − 1)
and using the formulas in section 2.1 this number can be computed. This finishes
the setup.

Sieving Fix a processor s. The sieving consist of a number of equal steps. Each
step is performed as follows. We start by picking the next sieving prime p. This
is exclusively done in processor 0 and thereafter the index of p is broadcast i.e.
the unique i such that i 7→ 2(i + 1) + 1 = p which is the element we find when
searching the sieving array. When s has received the next sieving prime it calls a
separate method that runs a sieving on the array B that reside on s. To sieve with
a prime, one now only need to calculate the offset into B where the sieving should
start i.e. the index in B that maps to the smallest odd integer there is a multiple
of p. Algorithm 2.2.1 calculates the offset and takes as input the prime p (for which
the index i map to) and endpoints of array B. To see that we need to be pay

Algorithm 2.2.1 calcOffset
Input: prime p, left endpoint leftEnd and right endpoint rightEnd both of array
B located at a particular processor.

Output: Smallest index in B such that the corresponding odd integer is a multiple
of p. If this is not possible to find such an index output is -1.
if leftEnd mod p == 0 then

return 0
end if
res = −(leftEnd mod p) + p
if res+ leftEnd > rightEnd then

return -1
end if
if (res+ leftEnd) mod 2 == 0 then

return res+p
2

else
return res

2
end if

attention to the possibility of completely missing a local sieving array consider the
example with n = 25 and p = 4. This partition the array into the following local
arrays: [3, 5, 7], [9, 11, 13], [15, 17, 19], [21, 23, 25]. When sieving with prime 5, we
totally misses the local array located at processor 1. To do the sieving we use the

8

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

algorithm presented in algorithm 2.2.2. This is essentially the same sieving process

Algorithm 2.2.2 Soe
Input: Local sieving array B, primeIndex (index from processer 0) of prime p,
left endpoint leftEnd and right endpoint rightEnd of array B and the processor
number, say s.
if s == 0 then
offset = 2 ∗ primeIndex ∗ (primeIndex+ 3) + 3

else
offset = calcOffset(2 ∗ primeIndex+ 3, leftEnd, rightEnd)

end if
if offset 6= −1 then

while offset < |B| do
B[offset] = 0
offset = offset+ prime

end while
end if

as in the sequential algorithm - therefore the name.

Pseudo code for the parallel version We now give the pseudo code of the
parallel version. We assume that the output is only going to be the number of
primes below some limit n. The code is displayed as algorithm 2.3.3.

Improvements Of course numerous improvements exist. We mention some of
them now. If one has a slow communication one may consider sending two primes
during the sieving instead of just one. Adjusting the code for this entails some
extra checks but if the communication is slow, this should provide a measurable
improvement. Of course one can also deploy some of the standard improvements for
the sequential sieve. This could be implementation of a wheel that will reduce some
redundant cross outs or reorganization of the (essentially) two loops, that perform
the sieving, such that we reduce the number of cache misses. Especially the last
modification may give a significant speed up. If the program is to be used as an
auxiliary method one may also consider using the sequential sieve for small inputs;
see section 3 for why.

A further research into improving our current scheme for the parallel version
can probably be done in the communication since we during the sieving only com-
municate from processor 0. Could one for example obtain an improvement by also
sending some information from the other processors?

9

Algorithm 2.2.3 Parallel Soe
Input: Limit n and number of processors p. Array A distributed by the block
distribution from section 2.1 using the setup from section 2.2. let As be the local
array.

Output: numberOfPrimes: Number of primes below n (including).
primeIndex = 0
leftEnd = 2

⌊
s
bn−1

2 c
p

⌋
+ 3

rightEnd = 2
⌊
(s+ 1) b

n−1
2 c
p

⌋
+ 1

while primeIndex <
√
n−3
2 + 1 do

(0)
Soe(s, leftEnd, rightEnd, |As|, As)
if s == 0 then

repeat
primeIndex = primeIndex+ 1

until As[primeIndex] == 1 or primeIndex ==
√
n−3
2

end if
(1)
for i = 1→ p− 1 do
put primeIndex in P (s, ∗)

end for
end while

(2)
for i = 0→ |As| − 1 do

if As[0] == 1 then
numberOfPrimess = numberOfPrimess + 1

end if
end for
if s == 0 then
numberOfPrimess = numberOfPrimess + 1

end if
(3)
put numberOfPrimess in P (s, ∗).
(4)
numberOfPrimes = 0
for i = 0→ p− 1 do
numberOfPrimes = numberOfPrimes+ numberOfPrimesi

end for

10

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

#Superstep Cost
0+1 n ln lnn

2p + π(
√
n)6 + π(

√
n)(p− 1)g + 2π(

√
n)l

2 π(µ) + 1 + l
3 (p− 1)g + l
4 p+ l

Table 1: BSP cost for algorithm 2.2.3.

2.3 BSP cost

For the analysis of the parallel version we assume that flagging an element in a
sieving array takes one flop.

Observe that the total cost of superstep 0 and 1 basically is the cost of running
the sequential Soe, cost of communicating and the fixed cost of 6 flop for computing
the offset into each array. Since the size of the global array is δ := bn−1

2 c we
have that the total number of flops is approximate δ ln ln δ + pπ(

√
n)6. Since we

have p processors we get the total approximate number of flop for superstep 0 is
approximate δ ln ln δ+pπ(

√
n)6

p
≈ n ln lnn

2p + π(
√
n)6 which imply that superstep 0 and

1 have the approximate cost n ln lnn
2p + π(

√
n)6 + π(

√
n)(p − 1)g + 2π(

√
n)l. The

convention in analysing the BSP cost is that we sum over the maximal number of
flops by any processor in each iteration of superstep 0. But this will require us to
determine, in each iteration, which local array imply the lowest offset of the sieving
prime. Instead we have calculated the amortized number of flops and made the
assumption that this is uniformly distributed over all processors.

Superstep 2 is a computational superstep which clearly obtain it’s maximal flops
on processor 0. It calculates the local number of primes. The cost is π(µ) + 1 + l

where µ is the size of the local array on processor 0. We assume here that the
density of primes decreases.

Superstep 3 is a communication superstep that simply broadcast one data word
to each processor. The cost is (p− 1)g + l.

Superstep 4 calculates the number of primes by adding up all local counters.
The cost is p+ l.

Table 1 sum up the cost of each superstep If we let TbspSoe be the BSP cost of

11

the parallel version we have

TbspSoe = n ln lnn
2p + 6π(

√
n)(p− 1)g + 2π(

√
n)l + π(µ) + 1 + l + (p− 1)g + l + p+ l

= n ln lnn
2p + 12

√
n

ln(n) + 1 + p+
bn−1

2 c
p

+ 1
ln
(⌊

n−1
2

⌋
+ p

)
− ln(p)

+ g(p− 1)
(

2
√
n

lnn + 1
)

+ l

(
4
√
n

lnn + 3
)

≈ n ln lnn
2p + p+ g(p− 1)

√
n

ln(n) + 4l
√
n

ln(n)

where we have used the approximation π(n) = O
(

n
ln(n)

)
.

3 Benchmark tests

In this chapter we test our implementation of the parallel SoE discussed in the last
chapter. Our strategy is first to benchmark the computer we are using and then
comparing empirical data with the expected theoretical performance. We will be
testing the implementation on the supercomputer Huygens.

3.1 Benchmark

To do the benchmark we use a DAXPY operation. We use the already implemented
version from the BSPedupack but also present a benchmark test in which the O(n)
bsp_ put address calculations is replaced with O(n) bsp_ get address calculations.
Table 2 and 3 shows the benchmark specifications and defines the BSP computer
we are working with. One imidiately observe that g and l are higher for the bsp_
get. This reflects the fact that bsp_put is more efficient then bsp_get. Also observe
that the increase in l reflect the fact that with more processors there is more to
do at each synchronization. The variance in r must be due to inaccuracy in the
benchmarking method.

3.2 Results/experiments

Here we present our results. Experiments have been done with the following method:
We consider a bit b between 2 and 31 and pick a uniform randomly chosen number
n such that n ∈ [2b−1 + 1, 2b]. With this number we measure the execution time for

12

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

Table 2: Benchmark Huygens with bsp_put.

p r (Mflop/s) g l
1 195.715 51.9 530.8
2 195.715 54.5 2109.5
4 193.256 54.7 4138.7
8 195.698 57 7634

Table 3: Benchmark Huygens with bsp_get.

p r (Mflop/s) g l
1 195.715 82 747.3
2 182.929 80.5 2759.6
4 195.587 90.6 6317.7
8 192.932 74.4 16842.2

p = 1, 2, 4, 8 at Huygens. The results are displayed in the graphs below. We have
divided the result into several plots to give a better view and comparison basis and
also with the goal of showing where the parallel advantage kick in. As BSP library
we have used BSPonMPI.

A more serious study would have involved picking (uniformly) a much bigger
sample space for each bit, say 500-1000 numbers (but depending on the variance
of the results), and take the average over a run with numbers in the sample space.
Also a more universal study would have involved calculating the number of flops
and a comparison with the result to the expected number of flops. In addition one
could also compute the utilization of the CPU with respect to flop/s.

Comments From the charts the first thing one may notice is the lack of im-
provements in the execution time for small bit size input. this reflect that fact
that more processors imply more communication. Therefore to make use of more
processors n must be an appropriate bit size.

We are now going to compare the experiment with p = 8 with the theoretical
execution time. For a bit b the theoretical execution time may be calculated by the
formula (

2b ln ln 2b
2p + p+ g(p− 1)

√
2b

ln(2b) + 4l
√

2b
ln(2b)

)
1
r
.

Notice that this will give an upper bound on the theoretical execution time for
a number with bit size b.We will use the BSP computer from table 2 because we

13

Figure 1: Small bit size numbers has poor advantage of parallelization.

Figure 2: For numbers with bit size around 21-22 we begin to see the first signs of
improvements by using more processors.

14

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

Figure 3: Improvements becomes clearer.

Figure 4: Nearing the limit of int the advantage of using 8 processors to 1 processors is
approximate a factor of 4.

15

Table 4: Result from experiment with p = 8 and the expected execution time. We start
from b = 9 because we can’t run with 8 processors on smaller input.

b experiment (sec.) expected (sec.)
9 0.000762 0.005737
10 0.000927 0.007304
11 0.001239 0.009396
12 0.001355 0.012191
13 0.001566 0.015935
14 0.002519 0.02097
15 0.002749 0.027766
16 0.004004 0.036992
17 0.00585 0.0496
18 0.007717 0.066982
19 0.01363 0.091226
20 0.011955 0.125569
21 0.019891 0.175202
22 0.030168 0.248794
23 0.031679 0.361364
24 0.066814 0.539859
25 0.097834 0.834079
26 0.180812 1.338
27 0.237409 2.234
28 0.542927 3.876
29 1.538 6.967
30 2.305 12.897
31 11.618 24.447

almost exclusively use bsp_put in the implementation. In table 4 we have put the
experimental execution time and the expected execution time. The higher expected
execution times may be due to several things. First of all we use n = 2b which will
give en upper bound. Also the formula used is again an approximation e.g. we have
approximated using the formula π(n) = O

(
n

ln(n)

)
. Looking closer at the table reveal

that the ratio between the expected execution time and the experimental execution
time is decreasing towards 1. This may reflect the approximative nature of the
formula used. When the SoE is used as an auxiliary method (in a factorization
algorithm as the elliptic curve method, where one need prime up to a certain limit)
this range of bit sizes is fairly common and in that range our implementation out
beats the expected time with at least a factor 2.5.

16

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

A Sequential Soe

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#include<math.h>

#include<time.h>

/*

* Input: The program will ask for input.

* Output: Number of primes below input (including the input)

* and execution time.

*

* The program is meant as a auxilliary method that can be

* used in several ways; number of primes below a limit,

* expanded to return an array of the primes between 2 and the

* input.

* We only represent odd numbers using the representation

* i |-> 2*i+1 where i is the index in the sieving_array with

* the convention that 0 |-> 2. With that convention we have

* index 2*i+1 is a prime if and only if sieving_array[i]=1,

* when we exit the method.

*/

main(){

clock_t start = clock(); //start time

long n;

long sieving_array_size = 0;

char *sieving_array;

int number_of_primes_below_n = 1; //2 is prime

printf("Input limit:\n");

scanf("%d",&n);

if(n<2){

printf("No primes below 2\n");

17

exit(0);

}

else{

sieving_array_size = (n+1)/2;

sieving_array = (char*)malloc(sizeof(char) * sieving_array_size);

if (!sieving_array) {

/* If data == 0 after the call to malloc,

allocation failed for some reason */

perror("Error allocating memory\n");

exit(0);

}

memset(sieving_array, 1, sizeof(char)*sieving_array_size);

}

int i;

int loop = 1;

int prime;

while(loop < (int)(sqrt(n)-1)/2+2){

if(sieving_array[loop] == 1){

number_of_primes_below_n++;

prime = 2*loop+1; //Sieving with this prime

for(i = loop*(2*loop+2); i < sieving_array_size; i = i + prime){

/* We start at prime^2=2*(2*loop^2+2*loop)+1 and since we do not

* need to sieve the even primes we sieve at every double

* multiple of prime. */

sieving_array[i] = 0;

}

}

loop++;

}

while(loop < sieving_array_size+1){

if(sieving_array[loop] == 1)

number_of_primes_below_n++;

loop++;

}

18

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

printf("Number of primes below %d is %d\n",n,number_of_primes_below_n);

clock_t end = clock();

printf("Time: %f sec.\n", (float)(end - start)/CLOCKS_PER_SEC);

return 0;

}

B Parallel Soe

#include "bspedupack.h"

#define SZLONG (sizeof(long))

/* This program computes the number of primes betwen 2 and n (including).

In addition the user may chose to save the primes on each processor

or both save and print out (standard output) all primes.

Options:

0 - Ordinary parallel sieve that count primes below n.

1 - Store all primes found, on each processor.

2 - Same as 1 but includes a printout of all primes found.

This is done by processor 0.

Notes:

- We only represent odd numbers.

- Block distribution. Invariant: Processor 0 contains all odd

numbers from 3 to at least sqrt(n).

Block size on processor s:

floor((s+1)*(floor((n-1)/2) / p)) - floor(s*(floor((n-1)/2) / p))

- Processor zero takes care of finding the next sieving prime.

*/

/* Global fields */

int P; /* number of processors requested */

long n; /* limit */

19

char flagOption; /* Self explaining */

void bspSoe(){

void Soe(int s, int leftIndex, int rightIndex, int szArray,

int primeIndex, char sievingArray[]);

int szLocalSievingArray = 0; /* Local sieving array size */

char *sievingArray; /* Local sieving array */

int *Primes; /* Stores primes - if option is flagged */

int *Accumulate; /* To distribute results later */

//long *Multiples; /* For becnhmarking */

long number_of_flops=0; /* Local number of flops */

int i, j, p, primeIndex, s, leftEnd, rightEnd, number_of_primes_below_n = 0;

double time0, time1;

bsp_begin(P);

p= bsp_nprocs(); /* Number of processors obtained */

s= bsp_pid(); /* Processor number */

/* Make sure every processor knows everything */

bsp_push_reg(&n,SZLONG);

bsp_push_reg(&flagOption,sizeof(char));

bsp_push_reg(&primeIndex,SZINT);

bsp_sync();

bsp_get(0,&n,0,&n,SZLONG);

bsp_get(0,&flagOption,0,&flagOption,sizeof(char));

bsp_sync();

bsp_pop_reg(&n);

bsp_pop_reg(&flagOption);

/* Define size of arrays for distributing results */

Accumulate = vecalloci(p);

//Multiples = (long *)malloc(sizeof(long) * p);

bsp_push_reg(Accumulate, p*SZINT);

//bsp_push_reg(Multiples, p*SZLONG);

20

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

if(s==0)

printf("Setting up distribution\n"); fflush(stdout);

/* Setup distribution. We might need to leave out some

processors because we enforce that processor 0 contain

odd integers from 3 up to at least sqrt(n). ’p’ will

be the number of processors used. This situation will

not happen very often. Infact if n>10000 we need more

than 100 processers before any restriction will take place.

*/

/* Avoid multiple computations */

int szGlobalArray = floor((n-1)/2);

leftEnd = 2*s*(szGlobalArray / p)+3;

rightEnd = 2*(s+1)*(szGlobalArray / p)+1;

/* Allocate sieving arrays */

szLocalSievingArray = floor((s+1)*(szGlobalArray / p)) -

floor(s*(szGlobalArray / p));

sievingArray = (char*)malloc(sizeof(char) * szLocalSievingArray);

if (!sievingArray && n > 2) {

/* If sievingArray == 0 after the call to malloc,

allocation failed for some reason */

bsp_abort("Error allocating memory\n");

}

/* Set all cells to 1 */

memset(sievingArray, 1, sizeof(char)*szLocalSievingArray);

if(s==0)

printf("Sieving\n"); fflush(stdout);

primeIndex = 0; /* First sieving prime(3) index */

time0 = bsp_time();

21

/* Below is the main sieving.

Benchmark: Each time we hit a prime, we do at most

12 flops to calculate the offset and initialize

the sieving plus the number of multiples we need

to calculate for the prime.

*/

while(primeIndex < (int)((sqrt(n)-3)/2)+1){

//number_of_flops += (rightEnd % (2*primeIndex+3))+12 -

(leftEnd % (2*primeIndex+3));

Soe(s, leftEnd, rightEnd, szLocalSievingArray, primeIndex, sievingArray);

if(s==0){ /* Find next sieving prime. This is done in processor 0. */

do{

primeIndex++;

}

while(sievingArray[primeIndex] == 0 && primeIndex < (int)((sqrt(n)-3)/2)+1);

}

bsp_sync(); /* To enforce the BSP scheme. */

if(s==0){

for(i=1; i<p; i++){

bsp_put(i,&primeIndex,&primeIndex,0,SZINT);

}

}

bsp_sync();

}

bsp_pop_reg(&primeIndex);

if(s==0)

printf("Counting primes\n"); fflush(stdout);

/* Count non-flagged elements - these are the primes */

for(i=0; i<szLocalSievingArray; i++){

if(sievingArray[i]==1)

number_of_primes_below_n += 1;

}

bsp_sync():

22

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

/* Distribute results */

for(i=0;i<p;i++){

bsp_put(i, &number_of_primes_below_n, Accumulate, s*SZINT, SZINT);

//bsp_put(i, &number_of_flops, Multiples, s*SZLONG, SZLONG);

}

bsp_sync();

/* Calculate results on each processor */

number_of_primes_below_n = 0;

//number_of_flops = 0;

for(i=0;i<p;i++){

number_of_primes_below_n += Accumulate[i];

//number_of_flops += Multiples[i];

}

number_of_primes_below_n += 1; //Two is a prime

/* If flagged: Store primes from 1 to n on all processors. */

if(flagOption > 0){

if(s==0)

printf("Storing primes\n"); fflush(stdout);

Accumulate[0] -= 1; //Store 2 adhoc.

int temp = 0;

for(i=0;i<p;i++){

temp += Accumulate[i];

Accumulate[i] = -Accumulate[i]+temp;

}

Primes = vecalloci(number_of_primes_below_n);

bsp_push_reg(Primes, (number_of_primes_below_n)*SZINT);

bsp_sync();

int index = 0, pr = 2, k;

for(i=0;i<p;i++)

bsp_put(i, &pr, Primes, 0, SZINT);

23

for(j=0;j<szLocalSievingArray;j++){

if(sievingArray[j]==1){

pr=leftEnd+2*j;

for(k=0;k<p;k++){

bsp_put(k,&pr,Primes, SZINT*(Accumulate[s]+index+1),SZINT);

}

index++;

}

}

bsp_sync();

/* If flagged: Print out primes to standard output */

if(flagOption > 1){

if(s==0){

int size = 10;

if(n > 1000000)

size = 5;

printf("Primes from 2 to %ld:",n); fflush(stdout);

for(i=0;i<number_of_primes_below_n;i++){

if(i % size == 0)

printf("\n");

printf("%d, ",Primes[i]); fflush(stdout);

}

}

printf("The end.\n");

bsp_sync();

}

}

time1 = bsp_time();

printf("Processor %d: Number of primes from 2 to %ld is %d\n",

s, n, number_of_primes_below_n); fflush(stdout);

if(s==0){

printf("This took %.6lf seconds.\n",time1-time0);

// printf("Number of FLOPS (approx): %ld\n", number_of_flops);

}

24

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

bsp_end();

} /* End bspSoe*/

void Soe(int s, int leftEnd, int rightEnd, int szLocalSievingArray,

int primeIndex, char sievingArray[]){

int offset, prime;

int calcOffset(int prime, int leftEnd, int rightEnd);

prime = 2*primeIndex+3; /* Sieving prime */

if(s == 0)

offset = 2*primeIndex*(primeIndex+3)+3;

else /* Save some time in proc 0. Might be redundant if

the bottleneck is somewhere else */

offset = calcOffset(prime, leftEnd, rightEnd);

if(offset != -1) {

while(offset < szLocalSievingArray){

/* Since we do not need to sieve the even

primes we sieve at every double multiple

of the sieving prime.

*/

sievingArray[offset] = 0;

offset = offset + prime;

}

}

} /* End Soe */

/* Calculate offset into processer s with left endpoint ’leftEnd’

(recall we only represent odd numbers). RETURN -1 if prime

does not hit the interval represented in s.

*/

int calcOffset(int prime, int leftEnd, int rightEnd){

if(leftEnd % prime == 0)

return 0;

25

int res = -(leftEnd % prime) + prime;

int value = res + leftEnd;

if(value > rightEnd)

/* For small n we might skip a whole interval. e.g.

when n=25, p=4 and when sieving with 5 we skip

the second interval.

*/

return -1;

if(value % 2 == 0)

/* We need this to be odd because we only represent odd numbers */

return (res+prime)/2;

else

return res/2;

} /* End calcOffset */

int main(int argc, char **argv){

int temp;

bsp_init(&bspSoe, argc, argv);

/* sequential part */

printf("How many processors do you want to use?\n"); fflush(stdout);

scanf("%d",&P);

if (P > bsp_nprocs()){

printf("Sorry, not enough processors available.\n"); fflush(stdout);

exit(1);

}

printf("Please enter n:\n"); fflush(stdout);

scanf("%ld",&n);

if(n<2){

printf("Error in input: No primes stricly smaller than 2!!\n");

exit(1);

}

26

Torben Hansen, F120116
Parallel Algorithms Mastermath fall 2012 Project 1

temp = (floor((n-1)/2)) / (floor(sqrt(n)));

if(P > temp && n > 2){

P = temp;

printf("Can only use %d processor/s!\n", P); fflush(stdout);

}

printf("Options: 0 nothing, 1 store primes, 2 store and print out primes.\n"); fflush(stdout);

scanf("%d",&flagOption);

if(flagOption < 0 || 2 < flagOption){

printf("Error in input: Options are 0, 1 or 2 only!\n");

exit(1);

}

/* SPMD part */

bspSoe();

/* sequential part */

exit(0);

} /* end main */

27

