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In this measure point I will discuss smooth numbers and how they are used in the quadratic sieve.
A chapter of the general sieve problem is also included.

The quadratic sieve originates from the ancient problem: “Given an integer n, how do we factor
n?”. Actually this question isn’t difficult to answer; just use trial division. So let me restate the
problem: “Given an integer n, how do we factor n fast?”. Anyone reading this would know that
this turns out to be an extremely difficult task. We will use the Quadratic sieving factorisation
method for “motivating” our treatment of smooth numbers, in particular the counting function for
smooth numbers. In the end we will calculate a measure of the likelihood that we pick a smooth
number in an interval assuming a special bound.

1 The quadratic sieve

In this paragraph we will introduce the fundamentals of the quadratic sieve factorisation method.
Take an integer n that we would like to factor, how could we proceed? Well, the first thing we
could do is to assume that n is odd, otherwise we could divide out the two’s. The following lemma
is the basic of a century old factoring method by Fermat.

Lemma 1. If n ∈ N is odd, there exists a, b ∈ N such that n = a2 − b2.

Proof. We can assume n = 2r + 1 for r ∈ N. Pick a = r + 1 and b = r then

a2 − b2 = (r + 1)2 − r2 = r2 + 1 + 2r − r2 = 2r + 1 = n

With the formula a2 + b2 = (a− b)(a+ b) we wish to obtain a nontrivial factorization of n. If
we picked a and b as in the above lemma we would get the boring factorization n = 1 · n. But if
n = 8051 then n = 902 − 72 and this give n = (90 − 7)(90 + 7) = 83 · 97 that is there are other
possible picks of a and b in lemma 1.

Definition 1. If the pair (a, b) with a, b ∈ N satisfy a 6≡ ±b mod n we shall call the pair (a, b)
interesting and uninteresting if a ≡ ±b mod n.

The next theorem is extremely promising.

Theorem 1. If there exists a, b ∈ N with (a, b) interesting and a2 ≡ b2 mod n then
gcd(a± b, n) > 1 and further gcd(a± b, n) are nontrivial factors of n.

Proof. a2 ≡ b2 mod n is equivalent to n dividing the product (a−b)(a+b). Now if gcd(a−b, n) = 1
then n would divide the other factor, i.e. n|a + b. But this cant be, since (a, b) is an interesting
pair that is gcd(a− b, n) > 1. With the same argument we see that gcd(a+ b, n) > 1. Now since
gcd(a ± b, n) divides both a ± b and n and is greater than one, gcd(a ± b, n) has to be nontrivial
factors of n.
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But how to find a and b? We can venture a guess and hope for the best. But this is as slow,
well actually slower, than doing trial division. Remember we wish to find an interesting pair (a, b)
such that a2−b2 = n. Rearranging we get a2−n = b2. That is we can recast the previous problem
to the problem of figuring out when a2 − n is a perfect square which at least would give us a pair
(a, b) - interesting or not. Lets try it
Example 1. Let n = 1649 and let us work through the sequence x2−n with x = dn 1

2 e, dn 1
2 e+1, . . .:

412 − n = 32, 422 − n = 115, 432 − n = 200

This didn’t gave any perfect squares in immediate sight. Of course we could proceed by taking
bigger and bigger x but if the factors aren’t near the square root of n, we will have to iterate
through many a to find b. And if we find a pair (a, b) this could also turn out to be uninteresting!
But notice now the fantastic property: 32 · 200 = 6400 = 802 a perfect square! And since 412 ≡ 32
mod n and 432 ≡ 200 mod n we have (41 · 43)2 = 412 · 432 ≡ 802 mod n which is a solution to
a2 ≡ b2 mod n.

This is a promising method, but it will break down if we can’t ensure the existence of a pair
(a, b) satisfying the conditions in theorem 1. Luckily we have the following lemma. Which we state
without proof

Lemma 2. If n has at least two different odd prime factors, then more than half of the solutions
to a2 ≡ b2 mod n with gcd(ab, n) = 1 satisfy a ≡ ±b mod n.

We can now comfortably pursue what looked like godlike luck above. Look at the sequence{
x2 − n

}
x=dn

1
2 e,dn

1
2 e+1,...

From this we would like to pick out a subsequence with product a perfect
square. This yield a couple of questions: “Do such a subsequence exists?”, “and how do we find
the subsequence and how many terms of the sequence do we need?”

To answer the above questions we need the notation of smooth numbers, specifically B-smooth
numbers.

Definition 2. A number m ∈ N is B-smooth if all of its prime factors are ≤ B

The motivation for introducing smooth numbers is the following: Assume m is a number in
a our sequence

{
x2 − n

}
x=dn

1
2 e,dn

1
2 e+1,...

, which is not B-smooth. Then it is divisible by a large
prime, say p > B. If m has to be contained in a subsequence product a square either p2|m or
another number in the subsequence has to be divisible by p i.e. a multiple of p. Recall the way we
are searching for these numbers: x2−n, for x = dn 1

2 e, dn 1
2 e+ 1, . . .. Then Since p is large either m

has to be large because p2|m or we have to find a mate for m but these are few and far between.
The next lemma, which is crucial, shows that in a big enough sequence it will always be possible

to find a subsequence that has product a square.

Lemma 3. Let {mi}ki=1 be a sequence of B-smooth numbers for k ∈ N and let π(B) = #primes
in the interval [1, B]. If k > π(B) then there exists a subsequence

{
mij

}s
j=1 with product a perfect

square(i.e.
∏s
j=1 mij =perfect square)

Proof. Let m be a B-smooth number and write m in its prime decomposition

m =
π(B)∏
i=1

p
vpi (m)
i

where pi is the i’th prime and vpi(m) = # pi in the prime decomposition of m. Notice that we only
need the primes up to π(B) becausem isB-smooth. Write v(m) = (vp1(m), vp2(m), . . . , vpπ(B)(m))T .
Consider an arbitrary subsequence {mir}

r′

r=1 (1 ≤ r′ ≤ π(B)) of the sequence {mi}ki=1. {mir}
r′

r=1
has product a square if and only if every entrance in

v(mi1) + v(mi2) + · · ·+ v(mir′ ) =


vp1(mi1) + vp1(mi2) + · · ·+ vp1(mir′ )
vp2(mi1) + vp2(mi2) + · · ·+ vp2(mir′ )

...
vpπ(B)(mi1) + vpπ(B)(mi2) + · · ·+ vpπ(B)(mir′ )


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is even. But this is true if and only if

vpj (mi1) + vpj (mi2) + · · ·+ vpj (mir′ ) =
r′∑
r=1

vpj (mir ) ≡ 0 mod 2 ∀j = 1, 2, . . . , π(B)

if and only if
v(mi1) + v(mi2) + · · ·+ v(mir′ ) ≡ 0 mod 2

where we interpret this as taking module 2 in every entrance. We get that if we can find a
subsequence with the sum of the associated exponent vectors equalling 0(mod 2) we know that
the subsequence has product a square.

Let F2 be the finite field of 2 elements. Then Fπ(B)
2 is a vectorspace over F2 and

dimFπ(B)
2 = π(B). {v(mi)}ki=1 is contained in Fπ(B)

2 if we take mod 2 in every entrance in every
vector in the sequence. But since this vectorspace only has dimension π(B) and we have strictly
more vectors in the sequence {v(mi)}ki=1 they must be linearly dependent! In other words there
must exists a subsequence

{
v(mij )

}k′

j=1 with k′ < k and a vector v(mik′+1) not contained in the
subsequence such that

v(mi1) + v(mi2) + · · ·+ v(mik′ ) + v(mik′+1) = 0

in Fπ(B)
2 . This means

v(mi1) + v(mi2) + · · ·+ v(mik′ ) + v(mik′+1) ≡ 0 mod 2

and by the above condition
{
mij

}k′+1
j=1 must be a subsequence with product a square.

This subsequence could return a uninteresting pair (a, b), but by theorem 1, this wont happen
that often.

Notice how the lemma uses linear algebra and our sequence
{
x2 − n

}
x=dn

1
2 e,dn

1
2 e+1,...

to find
the subsequence we want so desperately and it is done by only knowing the B-smooth numbers in
some sequence. We can now write down a prototype algorithm:

(1) Choose the boundB, and look forB-smooth numbers in the sequence
{
x2 − n

}
x=dn

1
2 e,dn

1
2 e+1,...

.

(2) Collect π(B) B-smooth numbers from the sequence. Now lemma 3 imply that we can use
linear algebra to find a subsequence x2

1 − n, x2
2 − n, . . . , x2

k − n that has product a square, say
a2.

(3) Let [r]n be the smallest nonnegative(hence unique) remainder of r module n. Calculate [a]n
and [x1x2 · · ·xk]n.

(4) We have [a]2n ≡ [x1x2 · · ·xk]2n mod n. If ([a]n, [x1x2 · · ·xk]n) is an interesting pair, then
compute gcd([a]n ± [x1x2 · · ·xk]n, n) otherwise find more B-smooth numbers from{
x2 − n

}
x=dn

1
2 e,dn

1
2 e+1,...

and return to step 2.

The above algorithm is not complete. First of all there is a shit lode of technical stuff regarding
which data structure to use so the algorithm will be efficient. This is of course interesting and
most of all also an important ingredient in the algorithm, but it is something we won’t discuss
further other than stating that it can be done. Secondly is how we efficiently can calculate the
residue in step 3. Still this is important but again not something we will care about here. Third,
how do we choose the bound B and how can we examine the sequence in step 1 for B-smooth
numbers and discard the rest? The bound question is a pretty hard optimization problem while
the other question uses a sieving process much similar to the Sieve of Eratosthenes which is known
by any competent mathematician. The sieving process won’t be discussed, but we will turn our
attention to sieving theory in general and analyse the B-smooth numbers, especially the number
of B-smooth numbers.
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2 General sieve problem and a couple of useful theorems

Here we will shortly describe the general sieve problem and state and prove some useful theorems.
In the up most generality the sieve problem can be stated as follow: Let A be a finite set of

integers(In the extreme general case, this i taken as a finite set of objects) and P an index set
of primes such that for each p ∈ P there is associated Ap ⊂ A. The goal is to produce upper
and lower bounds of the set S(A,P ) = A\

⋃
p∈P Ap. Recall the inclusion-exclusion principle: Let

A1, A2, . . . , Am be finite sets then∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1
|Ai| −

∑
1≤i<j≤n

|Ai ∩Aj |+
∑

1≤i<j<k≤n
|Ai ∩Aj ∩Ak| − · · ·+ (−1)n−1|A1 ∩ · · · ∩An|

If we assume that the index set P is finite we can easily apply this to the set S(A,P ) in the
following manner: Let I ∈ P(P ) and define AI :=

⋂
p∈I Ap with the convention A∅ = A. Write

P = {p1, p2, . . . , pn} then

|S(A,P )| =
∣∣∣∣ A\ ⋃

p∈P
Ap

∣∣∣∣= |A|− ∣∣∣∣ ⋃
p∈P

Ap

∣∣∣∣
= |A| −

(
n∑
i=1
|Api | −

∑
1≤i<j≤n

|Api ∩Apj |+ · · ·+ (−1)n−1|Ap1 ∩ · · · ∩Apn |

)

= |A| −
(∑
I⊂P
|I|=1

|AI | −
∑
I⊂P
|I|=2

|AI |+ · · ·+ (−1)|P |−1|AP |

)

= (−1)|∅||A∅|+
∑
I⊂P
|I|=1

(−1)|I||AI |+
∑
I⊂P
|I|=2

(−1)|I||AI |+ · · ·+
∑
I⊂P
|I|=n

(−1)|P ||AP |

=
∑
I⊂P

(−1)|I||AI |

Notice how this gives an explicit formula for the cardinality of S(A,P ) but sadly the information
needed for calculating this is (very) rarely known.
Example 2. A concrete construction could be the following: Fix x ∈ Z with x > 0, let A = [1, x]∩N,
P the set of primes and Ap = {y ∈ A | p|y} then |S(A,P )| = ϕ(x) where ϕ denotes the Euler totient
function.

Let me also present another example
Example 3. Assume you are giving an interval [1, x] for some positive integer x followed with the
question: “How many primes are there in this interval?”. Let us derive a rough upper bound. Let
Pz =

∏
p<z p and define the function

φ(x, z) = | {n ≤ x | gcd(n, Pz) = 1} |

where x, z are positive real numbers. Now let µ denote the Möbius function and recall the funda-
mental property ∑

d|n

µ(d) =
{

1 if n = 1
0 otherwise

By this we can write

∑
d|gcd(y,Pz)

µ(d) =
{

1 if y ∈ {n ≤ x | gcd(n, Pz) = 1}
0 otherwise
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In sieve theory this kind of function is often called the sifting function. We can now calculate

φ(x, z) =
∑
n≤x

∑
d|gcd(n,Pz)

µ(d)

=
∑
d|Pz

µ(d)
∑
n≤x
d|n

1

=
∑
d|Pz

µ(d)
⌊x
d

⌋
=
∑
d|Pz

µ(d)
(x
d

+
⌊x
d

⌋
− x

d

)
=
∑
d|Pz

µ(d)x
d

+
∑
d|Pz

µ(d)
(⌊x
d

⌋
− x

d

)
Notice x−1

d ≤
⌊
x
d

⌋
≤ x

d imply
∣∣⌊x
d

⌋
− x

d

∣∣ ≤ 1 hence
∣∣µ(d)

(⌊
x
d

⌋
− x

d

)∣∣ ≤ 1 and we get a bound on
the last sum

φ(x, z) =
∑
d|Pz

µ(d)x
d

+O(2π(z))

Another property of the Möbius function is the identity
∏
p<z

(
1− 1

p

)
=
∑
d|Pz µ(d) 1

d . Using this
on the above we get

φ(x, z) = x
∏
p<z

(
1− 1

p

)
+O(2π(z))

The inequality 1− x ≤ e−x is valid for all positive x which applied to
∏
p<z

(
1− 1

p

)
implies

∏
p<z

(
1− 1

p

)
≤
∏
p<z

e−
1
p = e

−
∑

p<z

1
p

Theorem 5 below now yield the bound

φ(x, z) ≤ xe−
∑

p<z

1
p +O(2π(z)) = x(log z)−1eO(1) +O(2π(z))

This estimate has a huge error term but nonetheless by picking z = O(log x) and observing
π(x) = (π(x)− π(z)) + π(z) ≤ φ(x, z) + π(z) ≤ φ(x, z) + z we get

π(x) = O

(
x

log log x

)
which yield a bound on the number of primes in the interval [1, x]. This bound is pretty awful and
a much much better bound is known; π(x) = O

(
x

log x

)
often referred the prime number theorem.

We now present some useful results beginning with a technique called partial summation

Theorem 2. Suppose {an}∞n=1 is a sequence of real numbers and define S(x) =
∑
n≤x an for x a

positive integer. Also suppose n0 is a fixed positive integer with ai = 0 for j < n0 and x > n0 then
if f ∈ C1([n0,∞)) we have ∑

n≤x

anf(n) = S(x)f(x)−
∫ x

n0

S(t) d
dt
f(t)dt
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Proof. Notice an = S(n)− S(n− 1) so we can write∑
n≤x

anf(n) =
∑
n≤x

(S(n)− S(n− 1))f(n)

=
∑
n≤x

S(n)f(n)−
∑
n≤x

S(n− 1)f(n)

=
∑
n≤x

S(n)f(n)−
∑

n≤x−1
S(n)f(n+ 1)

= S(x)f(x) +
∑

n≤x−1
S(n)f(n)−

∑
n≤x−1

S(n)f(n+ 1)

= S(x)f(x)−
∑

n≤x−1
S(n) (f(n+ 1)− f(n))

= S(x)f(x)−
∑

n≤x−1
S(n)

∫ n+1

n

d

dt
f ′(t)dt

= S(x)f(x)−
(
S(1)

∫ 2

1

d

dt
f ′(t)dt+ S(2)

∫ 3

2

d

dt
f ′(t)dt+ · · ·+ S(x− 1)

∫ x

x−1

d

dt
f ′(t)dt

)

Since S(n) = 0 when n < n0 we obtain

∑
n≤x

anf(n) = S(x)f(x)−
(
S(n0)

∫ n0+1

n0

d

dt
f ′(t)dt

+ S(n0 + 1)
∫ n0+2

n0+1

d

dt
f ′(t)dt+ · · ·+ S(x− 1)

∫ x

x−1

d

dt
f ′(t)dt

)
= S(x)f(x)−

∑
n0≤n≤x−1

S(n)
∫ n+1

n

d

dt
f ′(t)dt

= S(x)f(x)−
∫ x

n0

S(t) d
dt
f ′(t)dt

because S(t) is constant on [n, n+ 1)(If t is not a integer we can interpret the sum as
S(t) =

∑
n≤btc an).

The above technique can be used to deduce

Theorem 3. ∑
n≤x

logn = x log x− x+O(log x)

Below is two theorems often used when working with sieve theory. We proof the first and give
the idea of the second.

Theorem 4. ∑
p≤n

log p
p

= logn+O(1)

Proof. Consider n! and notice by definition of the faculty function only primes below n can divide
n!. Now decompose n! into its prime factorization

n! =
∏
p≤n

pep
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For some power pa we have pa > n that imply
⌊
n
pa

⌋
= 0 that is ep in the prime decomposition is

giving by (if ap is the largest positive integer such that pap ≤ n)

ep =
ap∑
i=1

⌊
n

pi

⌋
Taking logarithm we obtain

logn! = log

∏
p≤n

pep


=
∑
p≤n

log pep

=
∑
p≤n

ep log p

=
∑
p≤n

(
log p

ap∑
i=1

⌊
n

pi

⌋)

We can get the bound

∑
p≤n

(
log p

ap∑
i=2

⌊
n

pi

⌋)
≤
∑
p≤n

(
log p

ap∑
i=1

n

pi

)

= n
∑
p≤n

(
log p

ap∑
i=2

1
pi

)

= n
∑
p≤n

log p
(

1− p1−n

p(p− 1)

)

≤ n
∑
p≤n

log p
(

1
p(p− 1)

)
= O(n)

Using theorem 3 we also have

logn! = log 1 + log 2 + · · ·+ logn =
n∑
i=1

log i = n logn− n+O(logn)

Combining we get ∑
n≤n

⌊
n

p

⌋
log p = n logn+O(n)

and hence the result.

By setting

an =
{

log p
p if n = p

0 otherwise

and using partial summation with f(t) = 1
log t one can show

Theorem 5. ∑
p≤n

1
p

= log logn+O(1)

We will use the last two theorems in this chapter to derive an upper bound for the cardinality
of smooth numbers in an interval.

7 of 11



Torben Hansen December 16, 2011

3 Counting smooth numbers

In this paragraph we treat the smooth numbers more thoroughly. We have already defined smooth
numbers in the former paragraph and therefore we go straight for the definition of the counting
function for B-smooth numbers

Definition 3. Let ψ(x,B) denote the number of B-smooth numbers in the interval [1, x]. More
explicitly:

ψ(x,B) = | {m | 1 ≤ m ≤ x, m is B-smooth} |
which could also be stated as

ψ(x,B) = | {m | 1 ≤ m ≤ x, if p|m then p < B} |

We are now interested in finding an upper for this function.

Theorem 6. With the above definition we have

ψ(x,B) = O
(
x(logB)e−

log x
logB

)
Proof. Pick δ > 0 then 1 = 1δ ≤

(
x
n

)δ for all n ≤ x so we can get

ψ(x, z) =
∑
n≤x

nB-smooth

1 ≤
∑
n≤x

nB-smooth

(x
n

)δ
= xδ

∑
n≤x

nB-smooth

1
nδ

Now let p1, p2, . . . , pk be the primes strictly below B then∏
p<B

(
1− 1

pδ

)−1
=
(

1− 1
pδ1

)−1(
1− 1

pδ2

)−1
· · ·
(

1− 1
pδk

)−1

=
( ∞∑
n=0

(
1
pδ1

)n)( ∞∑
n=0

(
1
pδ2

)n)
· · ·

( ∞∑
n=0

(
1
pδk

)n)

=
(

1 + 1
pδ1

+ 1
p2δ

1
+ . . .

)(
1 + 1

pδ2
+ 1
p2δ

2
+ . . .

)
· · ·
(

1 + 1
pδk

+ 1
p2δ
k

+ . . .

)
= 1 +

∑
1≤i1≤k
j1∈N

1
pj1δ
i1

+
∑

1≤i1<i2≤k
j1,j2∈N

1
pj1δ
i1
pj2δ
i2

+ · · ·+
∑

1≤i1<i2<···<ik≤k
j1,j2,...,jk∈N

1
pj1δ
i1
pj2δ
i2
· · · pjkδik

≥
∑
n≤x

nB-smooth

1
nδ

were we used the fundamental theorem of arithmetic and in the inequality discarded all 1
yδ

with
either y > x or y not B-smooth. The above yield the bound

ψ(x,B) ≤ xδ
∏
p<B

(
1− 1

pδ

)−1

Notice(
1 + 1

pδ

)(
1− 1

p2δ

)−1
=

(
pδ+1
pδ

)
(
p2δ−1
p2δ

) =
(
pδ + 1

)
p2δ

pδ (p2δ − 1) =
(
pδ + 1

)
pδ

(pδ − 1) (pδ + 1) =
(
pδ − 1
pδ

)−1

=
(

1− 1
pδ

)−1

Since
∏
p

(
1− 1

p2δ

)−1
= ζ(2δ) and we know that the Riemann zeta function converges for 2δ > 1

(δ is real) we get for δ > 1/2

∏
p<B

(
1− 1

pδ

)−1
=
∏
p<B

(
1− 1

p2δ

)−1 ∏
p<B

(
1 + 1

pδ

)
= O

∏
p<B

(
1 + 1

pδ

)
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Combining the above we thus have

ψ(x,B) = O

xδ ∏
p<B

(
1 + 1

pδ

)
Using the inequality 1 + x ≤ ex we obtain

xδ
∏
p<B

(
1 + 1

pδ

)
≤ xδ

∏
p<B

e
1
pδ = elog xδe

1
pδ1 e

1
pδ2 · · · e

1
pδ
k = e

δ log x+
∑

p<B

1
pδ (1)

Choose δ = 1− 1
logB with B so big that δ > 1/2 and write p−δ = p−1e

1
logB log p. By applying the

inequality ex ≤ 1 + xex we deduce∑
p<B

1
pδ

=
∑
p<B

1
p
e

1
logB log p

≤
∑
p<B

1
p

(
1 +

(
1

logB log p
)
e

1
logB log p

)

=
∑
p<B

1
p

(
1 +

(
1

logB log p
)
p

1
logB

)

≤
∑
p<B

1
p

(
1 +

(
1

logB log p
)
B

1
logB

)
=
∑
p<B

1
p

+B
1

logB
1

logB
∑
p<B

log p
p

By applying this to (1) we get

xδ
∏
p<B

(
1 + 1

pδ

)
≤ e(1− 1

logB ) log x+
∑

p<B

1
p+B

1
logB 1

logB

∑
p<B

log p
p

= elog x · e−
log x
logB · e

∑
p<B

1
p · eB

1
logB 1

logB

∑
p<B

log p
p

≤ x · e−
log x
logB · elog logB+O(1) · eB

1
logB 1

logB (logB+O(1))

= x · e−
log x
logB (logB) · eO(1) · eB

1
logB 1

logB (logB+O(1))

Hence
ψ(x,B) = O

(
x · e−

log x
logB (logB)

)

The above proof is also an example of the use of Rankins trick; we use the constant δ to obtain
a valid upper bound.

4 The likelihood of picking a B-smooth number in the quadratic sieve

In this section we calculate a measure of the likelihood that a value in our sequence is B-smooth.
But as a matter of fact this is essentially an unsolved problem in the interesting ranges1 so we
restrict ourselves to a special case. Another thing that complicate things is that we are not seeking
a likelihood in an ordinary interval say [1, y] for some positive integer y, but in the sequence{
x2 − n

}
d
√
xe,d
√
xe+1,.... To counter this problem heuristics have shown that a polynomial value is

just a likely to be smooth as a random number of the same magnitude. Thus to simplify we make
1See p. 75 in [Pomerance]
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the approximation that the numbers x2−n are all smaller than X = 2n1/2−ε for some 0 < ε < 1/2.
Let us calculate the likelihood that a number in the interval [1, X] is B-smooth when B = X1/u for
some 1 ≤ u ≤ 2(calculating the probability when u is not in this interval require more fancy stuff,
see [Pomerance] or [Granville]). For this we need to calculate the number of X1/u-smooth numbers
in the interval [1, X]. We have already done this in 3, but for this we will use another approach.
Since a number in [1, X] cant be divisible by two primes strictly larger than X1/u (if y ∈ [1, X]
with y = pq and p, q > X1/u then y = pq > X2/u ≥ X) we must exclude all numbers in [1, X]
that has a prime divisor strictly larger than X1/u. The numbers left must be the X1/u-smooth
numbers. Writing in math this is

ψ(X,X1/u) = bXc −
∑

X1/u<p≤X

⌊
X

p

⌋

because there are exactly
⌊
X
p

⌋
multiples of p in [1, X]. By removing the floor functions, we

will in the first part get an error bounded by 1, while in the other part, we subtract a number
between 0 and 1 to much from X for every p between X1/u and X hence this error term is clearly
bounded by the number of primes in [X1/u, X]. Using the prime number theorem stating that
π(X) = O

(
X

logX

)
we obtain

ψ(X,X1/u) = X −
∑

X1/u<p≤X

X

p
+O

(
X

p

)
= X

1−
∑

X1/u<p≤X

1
p

+O

(
X

p

)
(2)

Mertens proved a theorem similar to theorem 5

Theorem 7. ∑
p≤n

1
p

= log logn+ C +O

(
1

logn

)
for at constant C.

Using this we get∑
X1/u<p≤X

1
p

=
∑
p≤X

1
p
−

∑
p≤X1/u

1
p

= log logX + C +O

(
1

logX

)
−
(

log logX1/u + C +O

(
1

logX1/u

))
= log

(
logX

logX1/u

)
+O

(
1

logX

)
= log

(
u

logX
logX

)
+O

(
1

logX

)
= log u+O

(
1

logX

)
inserting this in (2) we get

ψ(X,X1/u) = X (1− log u) +O

(
X

logX

)
Hence the probability that a given number in [1, X] is X1/u-smooth is

ψ(X,X1/u)
X

= (1− log u) +O

(
1

logX

)
and since

ψ(X,X1/u)
X

(1− log u) → 1
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as X →∞ we have
ψ(X,X1/u)

X
∼ 1− log u X →∞
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