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Introduction

Reflecting on the quote below by Gauss, consider the ancient problem: “Given an integer
n, how do we factor n?”. Actually this question is not difficult to answer; use trial division.
So let us restate the problem: “Given an integer n, how do we factor n fast?”. Hopefully
the reader knows that this turns out to be extremely difficult; the polynomial complexity
barrier has not yet been accomplished and who knows, maybe we will never get there?

The interests in factoring integers may seem strange at a first glance. But numerous
motivations exists:

• Security for some cryptographic schemes rest on the hardness of factoring. In this
connection it is valuable information to know how big numbers, that human kind
together with computers are able to factor.

• Factoring are used in several primality proving algorithms, see e.g. [10].

• Are there anything more fun than combining the awesome power of a computer with
the beauty of mathematics?

This thesis attacks the factorization problem using the well known elliptic curve method
originally developed by Lenstra in the mid 1980’s. Since then, multiple optimizations
improving Lenstra’s algorithm has been developed; a 2. stage method and use of other
elliptic curve models. In 2007 a new model for ECM was proposed by Daniel Bernstein
and Tanja Lange building from work of Harold Edwards. It is this thesis goal to study
and examine the work by Bernstein and Lange and make an implementation using there
ideas.

In chapter 1 basic definitions and a brief reminder of the basic elliptic curve theory
is stated. Since this thesis has been written in extension of a course of which curriculum
contains some theory of elliptic curves, this is assumed known and as an effect, do not
contain proofs.

Continuing to chapter 2 we analysis the original algorithm by Lenstra including a
discussion of the standard continuation of the algorithm.
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Introduction

Chapter 3 develop and discuss the basic theory of Edwards curves. We present the con-
nection between Edwards curves and elliptic curves in Weierstrass form, prove important
results and analyse the performance of arithmetic on Edwards curves.

The last chapter serves as the documentation for the implementation of the elliptic
curve method using Edwards curves, made by the author. It includes a section of ex-
periments showing the performance of the implementation. A great number of further
optimizations are also presented and discussed. The source code can be downloaded by
visiting http://home.imf.au.dk/himsen/Cryptography.html.

I would like to take the opportunity to thank my advisor Jørgen Brandt for letting me
write this thesis and answering my (frequently occurring) naive questions. Also, thank
you Ann-Katrine for correction my many silly gramma mistakes with 1

ε precision - indeed
ECM is paralyzing.

Torben Hansen, 29-08-2012.

The problem of distinguishing prime numbers from composite numbers and
of resolving the latter into their prime factors is known to be one of the

most important and useful in arithmetic.
— Carl Friedrich Gauss(1777–1855)
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Chapter 1

Elliptic curves

In this chapter we define elliptic curves and present results which will be useful. One can
consider this chapter as a toolbox for later.

1.1 Definition of an elliptic curve

Let F be an arbitrary field and put f(x, y) = ax3 + bx2y+ cxy2 + dy3 + ex2 + fxy+ gy2 +
hx+ iy + j. If at least one of a, b, c, d is non-zero then

f(x, y) = 0 (1.1)

is a degree 3 curve in F2 with affine solutions (x, y) ∈ F2. If we homogenize f we have
F (x, y, z) = ax3 + bx2y + cxy2 + dy3 + ex2z + fxyz + gy2z + hxz2 + iyz2 + jz3 and the
projective form of (1.1) is then

F (x, y, z) = 0. (1.2)

This curve has the solutions (x, y, z) ∈ F3. Notice that if (x, y, z) is an solution with
(x, y, z) 6= (0, 0, 0) then so is (αx, αy, αz) for any α ∈ F∗. Hence it makes more sense to talk
about solutions to (1.2) as being in the projective space P2(F). Recall that the projective
space P2(F) consists of equivalence classes [x, y, z] with respect to the equivalence relation:

(x, y, z) ∼ (x′, y′, z′)⇔ ∃α ∈ F∗ : αx = x′, αy = y′, αz = z′.

The curve (1.2) is called non-singular if over F there is no point [x, y, z] on the curve
(1.2) where all three partial derivatives of F vanish. We are now ready to state the
definition of an elliptic curve.

Definition 1.1.1. A non-singular cubic curve of the form (1.2) with at least one rational
point (x, y, z) ∈ F3\(0, 0, 0) is said to be an elliptic curve over F.
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1. Elliptic curves

Consider now the homogeneous equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3 (1.3)

with ai ∈ F for some arbitrary field F. It turns out that if the defining equation (1.2) is an
elliptic curve then it is birationally equivalent to (1.3), see [18]. That is, we may express
all elliptic curves on the form (1.3).

1.2 Weierstrass model

Assume we are given an elliptic curve of the form (1.3) over the field F and let [x, y, z] be
a point on it. Then (x, y, z) 6= (0, 0, 0) by assumption. The points with z = 0 are called
the points at infinity. Actually we should rather say the point at infinity; putting the
point [x, y, 0] into (1.3) yield 0 = x3 hence x = 0. Since points are only determined up to
multiplication by a unit(y 6= 0 since x = 0 = z and (0, 0, 0) is excluded), [0, 1, 0] must be
the only point at infinity.

Next consider the curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.4)

This is called the affine part of an elliptic curve. Solutions to the above curve are embedded
in the solutions for (1.3) by (x, y) 7→ [x, y, 1]. Likewise if z 6= 0 , a solution [x, y, z] for the
projective curve corresponds to the solution (x/z, y/z) for the affine curve. When z = 0,
[x, y, z] do not correspond to a solution on the affine curve - but there are only one of
these. All points on the projective curve has the form [x, y, 1], except the point at infinity,
so we may interpret the points on the projective curves as points (x, y) satisfying (1.4)
plus the point at infinity. When working with the affine part of an elliptic curve, the one
point at infinity will be denoted by O.

If the curve (1.4) defines an elliptic curve it is said to be in long Weierstrass form. If
char(F) 6= 2 we may use the transformation (x, y) 7→

(
x, y − a1x+a3

2
)
to transform the long

Weierstrass form into Weierstrass form:

y2 = x3 + Cx2 +Ax+B, A,B,C ∈ F. (1.5)

Further if char(F) 6= 2, 3 then we can transform the above curve into short Weierstrass
form

y2 = x3 + ax+ b (1.6)

using the transformation (x, y) 7→
(
x− C

3 , y
)
.

When we are faced with curves on the form (1.5) and (1.6) it is easy to see whether they
define an elliptic curve or not; in the case of (1.6) it defines an elliptic curve if 4a3+27b2 6= 0
and (1.5) defines an elliptic curve if 4A3 + 27B2 − 19ABC −A2C2 + 4BC3 6= 0.
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1.3. Group structure on elliptic curves

From now on when we write elliptic curve one should think of the points on the curve
(1.4) plus the point at infinity O which is the projective point [0, 1, 0] on the projective
form of the affine curve although we will be using the projective coordinates in practice
because they induce faster addition and doubling. The special case curves (1.5) and (1.6)
will be denoted EW,a,b,c and EW,a,b respectively.

1.3 Group structure on elliptic curves

Definition 1.3.1. Let E be an elliptic curve curve over the field F. Then E(F) denotes
the set of points on E plus the point at infinity. In the special cases (1.5) and (1.6) we
have

EW,a,b,c(F) =
{

(x, y) ∈ F2 | y2 = x3 + cx2 + ax+ b
}
∪ {O}

EW,a,b(F) =
{

(x, y) ∈ F2 | y2 = x3 + ax+ b
}
∪ {O}

By magic it is possible to define a composition on the set E(F) making it into a group!
We restrict ourself to the case char(F) 6= 2. It is possible to define a composition in general
but it is more complicated and we do not need it.

Let P1, P2 ∈ EW,a,b,c(F) (not necessarily distinct) and write P1 = (x1, y1) and P2 =
(x2, y2). Define the operator ⊕ by:

(1) −O = O

(2) −P1 = (x1,−y1)

(3) O ⊕ P1 = P1

(4) If P1 = −P2 then P1 ⊕ P2 = O

(5) If P1 6= −P2 define

m =


y2−y1
x2−y2

x2 6= x1
3x2

1+2cx1+a
2y1

x2 = x1

then P1 ⊕ P2 = (x3, y3) with

x3 = m2 − c− x1 − x2 (1.7)

y3 = m(x1 − x3)− y1 (1.8)

Popular ⊕ is also referred to as the chord-tangent construction because of the following
geometrical view: If P1 and P2 are distinct and not equal to O, then take the straight
line trough both points and mark the third point of intersection with the curve (this
point always exists unless the line is vertical in which case the sum would be the point

3



1. Elliptic curves

at infinity see case 4). Take the marked point and reflect it in the x-axis (exists since
(x, y) ∈ EW,a,b,c(F) if and only if (x,−y) ∈ EW,a,b,c(F)) and let this be the sum of P1⊕P2.
If the two points are equal, take the tangent to that point (this is well defined because of the
non-singular condition we put on elliptic curves) and mark the third point of intersection,
reflect this point in the x-axis and let that point be the sum P1 ⊕ P2. This geometrical
description is a good way to visualize the composition in the case F = R where one may
draw the addition, see figure 1.1 and 1.2. When e.g. F = Z/pZ for some prime p it may
be confusing to try to draw the addition. In any case the composition defines a group on
the set EW,a,b,c(F). Below is the amazing theorem stating that elliptic curves really are

Figure 1.1: Dedicated addition on an elliptic
curve.

Figure 1.2: Doubling on an elliptic curve.

groups; even finitely generated abelian groups.

Theorem 1.3.2. Let F be a field with char(F) 6= 3. Then (EW,a,b,c(F),⊕) is a finitely
generate abelian group with O as neutral element and if P = (x, y) ∈ EW,a,b,c(F) the
inverse is −P = (x,−y).

Without confusion we will from now on write + instead of ⊕. The hardest thing to
prove in the present theorem is the associativity. It can be proven using computer algebra
systems such as Maple or if one is masochistic orientated, in hand.

Remark 1.3.3. (EW,a,b(F),+) also satisfy the above theorem with the defined composition.
Simply substitute c = 0 in the formulas. The theorem also apply for general elliptic curves
but with a more intricate composition.

Let Fp = Z/pZ. The theorem below is due to Hasse and restrict the curve order of
elliptic curves over fields of the form Fp.

Theorem 1.3.4. Let EW,a,b(Fp) be an elliptic curve. Then |EW,a,b(Fp)| ∈ [p+1−2√p, p+
1 + 2√p].

This theorem is key in the analysis of ECM.
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Chapter 2

Basic ECM

In the mid 1980’s H. W. Lenstra proposed a new factorization algorithm now known as the
elliptic curve factorization method abbreviated ECM. Even though this algorithm have a
worst case complexity equal to some of its competitors its special since the complexity
depends on the least prime in the prime factorization of the number trying to factor.
Therefore ECM currently provide the fastest means of finding factors of up to approxi-
mately 20-40 decimal digits (see e.g. [8]). In practice ECM is often used as subroutines
in e.g. the Number Field Sieve.

2.1 Pseudo elliptic curves

To formulate ECM it is not enough to know about elliptic curves over fields. We must, to
some extend, generalize the concept of an elliptic curve. In the following we describe this
generalization and introduce a partial addition on these (pseudo) elliptic curves.

The following example shows that the usual composition on elliptic curves does not
give a group structure over a general field.

Example 2.1.1. Assume that we define an elliptic curve over Z/nZ with n composite as
in definition 1.1.1 and using the same composition from theorem 1.3.2. Consider the
curve E = EW,−1,1(Z/25Z). We try to compute (1, 1) + (24, 4) on E. First observe that
(1, 1) = (1,−24) = −(1, 24) hence (1, 1)+(1, 24) =∞. The x-coordinate for (1, 1)+(41, 4)
is ( 3

20

)2
− 1− 21

but gcd(20, 25) > 1. We must have (1, 1) + (24, 4) =∞. But in a group the element (1, 1)
cannot have two inverse elements.

It should be emphasised that a rigorous construction exists but we will not need this.
Therefore we will do with the pseudo construction below.

5



2. Basic ECM

Definition 2.1.2. Let a, b ∈ Z/nZ with gcd(n, 6) = 1 and 4a3 + 27b2 ∈ (Z/nZ)∗. An
elliptic curve over the ring Z/nZ is the set

EW,a,b(Z/nZ) =
{

(x, y) ∈ Z/nZ× Z/nZ | y2 = x3 + ax+ b
}
∪ {O}

where O is the point at infinity.

While elliptic curves over Z/nZ do not form groups they have a natural projection to
curves EW,a,b(Fp) with p|n and p > 3.

Let x ∈ Z/nZ. With the notation [x]p we mean the unique integer satisfying x ≡ [x]p
mod p and 0 ≤ [x]p < p. Also for (x, y) ∈ EW,a,b(Z/nZ) we define (x, y)p = ([x]p, [y]p).

Definition 2.1.3. Let n ∈ N and let (x, y) be an element on the pseudo elliptic curve
EW,a,b(Z/nZ) different from the point at infinity. Also let p be a prime dividing n and
p > 3. Then the reduction module p is (x, y)p as an element of EW,[a]p,[b]p(Fp). Also define
Op = O as the identity element in EW,[a]p,[b]p(Fp)

If p does not divide n we have no control over whether EW,[a]p,[b]p(Fp) really is an
elliptic curve or not. This follows since by definition gcd(4a3 + 27b2, n) = 1 but then
also gcd(4a3 + 27b2, n) = 1 but if p - n we have no control over the behaviour of gcd.
If EW,[a]p,[b]p(Fp) is a well defined elliptic curve with p not dividing n, it is called a good
reduction.

Next we define partial addition on EW,a,b(Z/nZ).

Definition 2.1.4. Partial addition Given P1, P2 ∈ EW,a,b(Z/nZ). Then we define
P1 + P2 to be the usual addition on elliptic curves if all the required inverse elements
exists in the ring Z/nZ and likewise for [k]P1 with k ∈ N. In this situation we say that the
addition is well defined. If the addition require an inverse element which is not present it
is not possible to make the addition and we say that the addition fail.

The definition of [k]P being well defined has some subtleties. For k = 8 we may
calculate [8]P in different ways e.g. ((([2]P + [2]P ) + [2]P ) + [2]P ) or ([2]P + [2]P ) +
([2]P + [2]P ). It may be that one gives a well defined addition but the other does not.
If we in some way can calculate [k]P we say that it is well defined. Finding an inverse
to x in the ring Z/nZ is possible if and only if x and n are co-prime. That is, failure in
the partial addition occur if and only if gcd(x, n) > 1, a possible non trivial factor! It is
Lenstra’s ingenious observation that through this failure of finding an inverse, we shall be
able to factor the composite number n. The next lemma shows that the projection from
definition 2.1.3 is well behaved.

Lemma 2.1.5. Let R,Q ∈ EW,a,b(Z/nZ) and let p be a prime with p|n and p > 3. If the
partial addition R+Q is well defined, then (R+Q)p = Rp+Qp and if [k]R is well defined
then ([k]R)p = [k]Rp for k ∈ Z, k > 0.

6



2.2. ECM

Proof. We split the proof into the same cases as given in the composition on an elliptic
curve, see section 1.3

(3) Assume R = O and Q 6= O. Then (R+Q)p = (O+Q)p = Qp = Op +Qp = Rp +Qp.
Same apply if Q =∞ and argument R 6=∞. Assume for the R,Q 6=∞.

(4) Assume R = −Q hence R = (x, y) and Q = (x,−y). Then (R+Q)p = (O)p = O and
Rp+Qp = (x, y)p+(x,−y)p = ([x]p, [y]p)+([x]p,−[y]p) = O hence (R+Q)p = Rp+Qp.

(5) Assume R 6= −Q. Write R = (r1, r2) and Q = (q1, q2). If r1 6= q1 we have: By
assumption gcd(q1 − r1, n) = 1 and m = (q2 − r2)(q1 − r1)−1 is well defined in Z/nZ.
Therefore

R+Q =
(
m2 − r1 − q1,m

2
(
r1 −

(
m2 − r1 − q1

))
− r2

)
Then

(R+Q)p =
(
m2 − r1 − q1,m

2
(
r1 −

(
m2 − r1 − q1

))
− r2

)
p

=
(
[m]2p − [r1]p − [q1]p, [m]2p

(
[r1]p −

(
[m]2p − [r1]p − [q1]p

))
− [r2]p

)
But Rp = ([r1]p, [r2]p) and Qp = ([q1]p, [q2]p) hence

Rp +Qp =
(
[m]2p − [r1]p − [q1]p, [m]2p

(
[r1]p −

(
[m]2p − [r1]p − [q1]p

))
− [r2]

)
from the normal addition and [m]p = [(q2 − r2)(q1 − r1)−1]p = ([q2]p − [r2]p)([q1]p −
[r1]p)−1.

If r1 = q1 the arguments are similar. The well defined assumption in the lemma is in
this case used such that we know gcd(2r2, n) = 1.

If both R and Q equal O it is trivial since by definition Op = O. ([k]R)p = [k]Rp now
follows by induction.

With the knowledge that R+Q is well defined, we can with the above lemma in hand
make statements about Rp + Qp without even knowing the exact value of p. The Only
thing we need to know beforehand is that p|n.

2.2 ECM

We will now state the elliptic curve method. It is actually really simple but pretty hard
to analyse. The analysis will be done in the next section. The algorithm is displayed as
algorithm 2.2.1

Remark 2.2.1. To make the algorithm terminate there must be some upper bound on the
number of times we wish to allow a new curve to be picked but clearly if it terminate it
will produce a non-trivial divisor in n.

7



2. Basic ECM

Algorithm 2.2.1 ECM (Lentra’s original algorithm)
Input: n ∈ Z/nZ, n > 0 with gcd(6, n) = 1 and not a perfect power.
Output: Factor in n.

(1)Pick bound B1
(2) Find pseudo elliptic curve E = EW,a,b(Z/nZ) and a point (x, y) ∈ E:
x, y, a ∈

R
[0, n− 1]

b := (y2 − x3 − ax) mod n
g := gcd(4a3 + 27b2, n)
if g == n then
Go to (1)

end if
if g > 1 then
return g

end if
Pick E = EW,a,b(Z/nZ) and P = (x, y)
(3) Prime power multipliers:
Compute list of primes {p1, p2, . . . , pπ(B1)}
for i = 1→ π(B1) do
Find largest integer ai such that paii ≤ B1
for j = 1→ ai do
P = [pi]P using the partial addition. If the addition fails then if gcd(d, n) 6= n one
Return gcd(d, n) where d is the addition-slope denominator which do not have an
inverse in Z/nZ.

end for
end for
(4) Failure
Go to (2) or increment B1

We now add some additional notes to each block in the ECM algorithm.

(1) This bound is really an experimental thing which must be tunable. Optimally it
depends on the least prime factor in n which a priori is unknown. Therefore one must
choose a bound and adjust it with respect to the practical behaviour of the algorithm.

(2) Here we pick the pseudo elliptic curve which we will be working over. The notation ∈
R

means that we pick the elements out randomly (with a uniform distribution). There
is a slight change (depending on n) that we pick x, y and a such that we do not define
an pseudo elliptic curve. This is checked with gcd(4a3 + 27b2, n).

(3) What we do here is to compute [k]P for a k that is chosen to consist of a lot of small
primes and powers of these. Explicitly we pick k =

∏π(B1)
i=1 paii were pi and ai are as

described in the algorithm.

(4) If the addition does not fail we pick a new curve. There is an extension at this point
which increase the chances of success. This is called The second stage and will be
described in section 2.4.

8



2.3. Complexity

A lot of work has been put into optimizing the original algorithm proposed by Lenstra.
Optimisations such as: The choice of curve, the choice of elliptic curve model and coordi-
nate system, the choice of k and how to compute it (addition chains) and a second stage.
In chapter 3 and 4 we will be optimizing the basic ECM using Edwards curves including
some of the ideas just mentioned.

2.3 Complexity

ECM is a probabilistic algorithm and only a heuristic complexity estimate exists but
which in turn may be made rigorous except for one unproven conjecture concerning the
smoothness distribution in the Hasse interval. In this section we give an estimate of the
running time of ECM but with some simplifications to make the analysis easier.

We must first settle the obvious question; why do ECM work? We give a sufficient
condition.

Lemma 2.3.1. Let n be composite with gcd(6, n) = 1 and not a perfect power. Pick
a, x, y ∈ Z/nZ random and put b = y2 − x3 − ax mod n, Q = (x, y). Suppose gcd(4a3 +
27b2, n) = 1 then EW,a,b(Z/nZ) is well defined. Also suppose that p is a prime dividing n.
If EW,[a]p,[b]p(Fp) is B1-power smooth (B1 is the bound in algorithm 2.2.1) we have

[k]Qp = O on EW,[a]p,[b]p(Fp) (2.1)

where k =
∏
i<π(B1) p

ai
i with ai maximal such that paii ≤ B1.

Proof. Put E = EW,[a]p,[b]p(Fp). Since |E| is B1-power smooth we have |Ep| |k and hence
∃δ such that |E| · δ = k. This give

[k]Qp = [|E|δ]Qp = [δ]([|E|]Qp) = [δ]O = O.

Observe [k]Q = O over E in particular happens |E| divides k i.e. that |E| is B1-power
smooth.

Proposition 2.3.2. Let the situation be as in lemma 2.3.1. Assume [k]Qq 6= O on
EW,[a]q ,[b]q(Fq) for a prime dividing n. Then we have a factor in n.

Proof. Assume for the sake of a contradiction that [k]Q is well defined over EW,a,b(Z/nZ).
If [k]Q = O then by lemma 2.1.5 [k]Qq = ([k]Q)q = Oq = O contradicting our assumption.
If [k]Q 6= O then [k]Q = (x, y) for some x, y ∈ Z/nZ. These satisfy y2 = x3 + ax + b.
Reducing module p we obtain two points which satisfy the same equation, hence [k]Qp =
(x, y)p 6= O. A contradiction by lemma 2.3.1.

9



2. Basic ECM

The above essentially says that when considering all primes dividing n, if there is at
least one pair (p, q) of divisors of n such that the curve order when reducing p is B1-power
smooth and the curve order reducing q is not B1-power smooth we will discover a factor in
n. Since the curve order of all good reductions is restricted by theorem 1.3.4 the possibility
that all prime factors of n will have B1-power smooth reduction is small if B1 is chosen
appropriate. If more than one prime divisor of n has B1-power smooth reduction we will
probably not find a prime divisor but some composite divisor of n.

The complexity is ruled by the number of curves we must use and how long time
each curve takes to process. We begin with an estimate of the number of curves we may
possibly use.

What corollary 2.3.2 and the discussion above shows is that the lowest (2.3.2 gives a
sufficient condition) change of success with ECM depends on the smoothness distribution
of the elliptic curves EW,[a]p,[b]p(Fp) for primes p dividing n. Let p be the smallest prime
divisor of n. We make the assumption that the likelihood of the events in proposition
2.3.2 is dominated by the event that EW,[a]p,[b]p(Fp) is B1-power smooth. We also make
the assumption that being B1-power smooth is the same as being B1-smooth, because
only primes below

√
B1 occur with a power different from 1.

Let prob(B1) denote the probability of success in algorithm 2.2.1 using the bound B1

hence we need approximate 1
prob(B1) curves to find a factor in n. By the above simplifica-

tions prob(B1) equals the probability that EW,[a]p,[b]p(Fp) is B1-smooth. We now assume
that the order of EW,[a]p,[b]p(Fp) is uniformly distributed in the Hasse interval (By a the-
orem of Deuring [10] p. 334 all integers in the Hasse interval actually corresponds to at
least one elliptic curve).

Now lets look at the cost for one curve in ECM. The primary work is done in the two
for-loops we therefore neglect the other costs. For each pi we need to make paii elliptic
curve operations costing about ln(paii ) since we exponentiate. Notice this is ≤ ln(B1) since
paii ≤ B1. The number of primes up to B1 is approximately π(B1) ≈ B1

ln(B1) . Therefore
the cost for the two loops is around

∑π(B1)
i=1 ln(pi) ≤

∑π(B1)
i=1 ln(B1) = π(B1) ln(B1) ≈

B1
ln(B1) ln(B1) = B1. Hence the overall work is approximate B1

prob(B1) .
To minimize the estimated running time, the number B1 should be chosen such that
B1

prob(B1) is minimal. To proceed we need a conjecture. Define L(x) = e
√

lnx ln lnx then the
hope is

Conjecture 2.3.3. Let α be a real number. Then the probability that a random positive
integer s ∈ [x+ 1− 2

√
x, x+ 1 + 2

√
x] has all its prime factors ≤ L(x)α is L(x)−

1
2α+o(1)

for x→∞

For x = p and the discussion above, conjecture 2.3.3 implies prob(L(p)α) = L(p)−
1

2α+o(1)

for p → ∞. Put B1 = L(p)α. Then B1
prob(B1) = L(p)α

L(p)−
1

2α+o(1) = L(p)
1

2α+α+o(1) for p → ∞.

10



2.4. 2. Stage

We must minimize a + 1
2α which is easy to see occur at α =

√
2

2 . Hence we should pick
B1 = L(p)

√
2

2 +o(1) and thereby obtain B1
prob(B1) = L(p)

√
2+o(1). We have given a rough

review of the conjecture running time of ECM (conjecture 2.10 [17])

Conjecture 2.3.4. Let n be a positive integer not divisible by 2 and 3. Let M(n) denote
an upper bound for the time, measured in bit opreations, that is needed to perform a single
addition (EC addition of points) and let p be the smallest prime dividing p. Then the
complexity of ECM algorithm 2.2.1 is

O

(
e
√

(2+o(1)) ln p ln ln pM(n)
)

Remark 2.3.5. By the former considerations, we need O

(
e
√

1
2 ln p ln ln p

)
curves and use

O
(
e
√

2 ln p ln ln p
)
elliptic curve additions.

Note that the running time depends on the least prime dividing n. Other known
factoring algorithms such as (general)NFS and QS both have running times that depends
solely on n; Ln[1/3, (63/9)1/3] and Ln[1/2, 1] respectively. Theoretically this must give an
upper hand to ECM when factoring numbers which have some small prime factors.

One problem with ECM is that a priori we have no idea what p is and it is therefore
hard to pick the optimal bound this is also why we must leave B1 as a configurable bound
in the algorithm.

2.4 2. Stage

One way to really optimize the change of finding a factor using ECM is to implement a
second step called the 2. stage. To see the logic in this we start by assuming p is the
least divisor in n and the curve order |EW,[a]p,[b]p(Fp)| = |E| turn out not to be B1-power
smooth. Then we expect the algorithm to fail. But what if |E| is (B1, B2)-smooth for some
reasonable (here reasonable should be thought of as that the positive difference B2 − B1

should not be too large) B2? This means that we can write |E| = q
∏

some paii ≤B1
paii for

some prime q with B1 < q ≤ B2 and q 6= pi for all i. The extra prime q is the reason that
k did not become a multiple of the curve order |E|.

Because ECM failed we are in the possession of a pointQ satisfyingQ =
[∏

p
ai
i ≤B1

paii

]
P

where P is the initial point in ECM. Let {q0, q1, . . . , qs} be the primes from B1 to B2 and
define ∆i = qi+1− qi for i = 0, 1 . . . , s− 1. Then the 2. stage idea in ECM is to check the
points

[q0]Q, [q0 + ∆0]Q, [q0 + ∆0 + ∆1]Q, . . . , [q0 + ∆0 + ∆1 + · · ·+ ∆s−1]Q (2.2)

Note that since q from before is a prime between B1 and B2 we will actually catch it here;
say q = qi then [qi]Q = [q0 + ∆0 + · · ·+ ∆i−1]Q.

11



2. Basic ECM

The crucial observation to make is that we use almost no work per prime. Say we
want to calculate

[q0 + ∆0 + ∆1 + · · ·+ ∆i]Q = [q0 + ∆0 + · · ·+ ∆i−1]Q+ [∆i]Q.

Beforehand we have computed [q0 + ∆0 + · · ·+ ∆i−1]Q and saved it an auxiliary register
R. We then have to calculate R + [∆i]Q = R + [qi+1 − qi]Q. Since qi and qi+1 are two
consecutive primes, their difference is not that large.

A more efficient way to do this is to pre compute a table T with R1 = [2]Q, R2 = [2·2]Q,
..., Rd = [2 · d]Q where d is the largest integer such that 2d ≤ ξ, where ξ is some limit, see
section 4.2. Say that we again would like to calculate

[q0 + ∆0 + ∆1 + · · ·+ ∆i]Q = [q0 + ∆0 + · · ·+ ∆i−1]Q+ [∆i]Q.

Again R contains [q0 + ∆0 + · · · + ∆i−1]Q and we need to compute R + [∆i]Q. But
∆i = qi+1−qi and since both qi+1 and qi are odd positive integers there difference is even.
Hence we may find some δ such that ∆i = 2 · δ. which imply [∆i]Q = [2 · δ]Q = Rδ where
Rδ is a precomputed element from our table T . This means we only need to compute
R + Rδ, only one EC-operation. That is, with the precomputed table we need only one
EC-operation per prime and since the table can be computed efficiently, this method has
a far better performance than the first. One downside is that the method require more
memory, but not much. Implementation of the latter version is discussed in section 4.2.
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Chapter 3

Edwards curves

In [13] Edwards gave a new normal form for elliptic curves. He showed that every elliptic
curve over a field F of characteristic not 2, can be written as x2 + y2 = c2 + c2x2y2 over
a finite extension field of F. In [5] Bernstein and Lange generalized Edwards notion to
x2+y2 = c2(1+dx2y2) to allow more elliptic curves to be written in Edwards form without
an extension of the underlying field.

In this chapter F denotes a field with char(F) 6= 2 if nothing else is stated. It is possible
to define Edwards curves over binary fields (see [11]) which in particular is interesting for
implementing elliptic cryptography using Edwards curves on chips and smart cards.

3.1 Edwards curves

We now define Edwards cruves. Consider the curve

x2 + y2 = c2(1 + dx2y2), c 6= 0.

This curve is isomorphic to

x2 + y2 = 1 + dx2y2, d = dc4,

which follows from the map (x, y) 7→ (cx, cy).

Definition 3.1.1. Let d ∈ F\{0, 1}. An Edwards curve over F is a curve on the from

x2 + y2 = 1 + dx2y2 (3.1)

with d ∈ F\{0, 1}. We denote the Edwards curve by EE,d.

Both Euler and Gauss has worked on the special case d = −1. In [14] Gauss presented
addition formulas for that particular case; (s, c) + (s′, c′) =

(
sc′+s′c
1−ss′cc′ ,

cc′−ss′
1+ss′cc′

)
. With his

choice of s and c he probably hinted to the connection with the addition laws for sine and
cosine (look at the numerators and try to remember how the additions formulas for sine
and cosine looks like). For more on this analogy see remark 3.2.2.
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3. Edwards curves

Remark 3.1.2. The reason for not allowing d = 0 or d = 1 is the following. If d = 0 then
x2 + y2 = 1 which is a genus 0 curve, not an elliptic curve (Generally an elliptic curve is a
projective non singular genus 1 curve. This definition is equivalent with the one given in
definition 3.1.1 by the Riemann-Roch theorem). If d = 1 then 0 = 1 + x2y2 − x2 − y2 =
(y2 − 1)(x2 − 1) which again does not describe an elliptic curve.

Figure 3.1: Edwards curve EE,−30 over R. Figure 3.2: Edwards curve EE,4 over R.

Figure 3.3: Edwards curve EE, 1
2
over R. Figure 3.4: Edwards curve EE,−1 over R.

In this thesis we are interested in using Edwards curves in connection with ECM. To
do this properly we must know several things: We need a lot of elliptic curves that can be
written in Edwards form over the original field, addition must in some sense correspond
to addition on the original elliptic curve and arithmetic on Edwards cannot be too bad
otherwise it would be productive to switch to Edwards form (when one wants to be faster).

We need the notion of birationally equivalent curves.

Definition 3.1.3. Let V and V ′ be two curves. V and V ′ are birationally equivalent if
there exists two rational maps φ : V → V ′ and φ′ : V ′ → V such that φ ◦ φ′ = id and
φ′ ◦ φ = id for all but finitely many points.

First we need a connection between Edwards curves and Weierstrass curves. In the
original article [5] Bernstein and Lange used a possible twist and an assumption of exis-
tence of an unique point of order 2 on the elliptic curve, but these are redundant. The
proof is completely constructive.
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3.1. Edwards curves

Theorem 3.1.4. Let E be an elliptic curve over F. Assume the group E(F) has an
element of order 4. Then E is birationally equivalent to an Edwards curve.

Proof. Assume E has a point of order 4. Let this point be P = (l, r) and r 6= 0 otherwise
P would have order 2. Since char(F) 6= 2 we may assume E is on the form v2 = u3 +a2u

2 +
a4u+ a6. Since P has order 4, [2P ] = (l′, r′) must have order 2 implying (l′, r′) = (l′,−r′)
and so r′ = 0. We now move this point to origo. Hence WLOG we assume l′ = 0 i.e.
[2]P = (0, 0) and a6 = 0; in the general case make the transformation l′ + l′ = u. If l = 0
we would have r2 = 03 + a202 + a40 = 0 contradicting r 6= 0 hence l 6= 0.

We now express a2 and a4 in terms of l and r. By the doubling law on E (identity
1.8) and [2]P = (0, 0) we get

0 =
(

3l2 + 2a2l + a4
2r

)
(l − 0)− r ⇔ 2r2 = 3l3 + 2a2l

2 + a4l.

Since P is also on the curve E we have the identity r2 = l3 + a2l
2 + a4l. Subtracting this

identity two times from the above yield

0 = l3 − a4l⇔ l2 = a4

because l 6= 0. We also obtain

a2 = a2l
2

l2
= r2 − l3 − a4l

l2
= r2 − 2l3

l2
= r2

l2
− 2l

Our curve E is therefore

v2 = u3 +
(
r2

l2
− 2l

)
u2 + l2u. (3.2)

Define d = 1 − 4 l3
r2 . We argue d 6= 0, 1. If d = 1 then l3 = 0 contradicting l 6= 0. If

d = 0 then 4l3 = r2. E then has the form

v2 = u3 +
(
r2

l2
− 2l

)
u2 + l2u

= u3 +
(

4l3

l2
− 2l

)
u2 + l2u

= u3 + 2lu2 + l2u

= u(u2 + 2lu+ l2)

= u(u+ l)2

implying E to be a singular curve, contradicting E being an elliptic curve.
We now define a map from E to the Edwards curve EE,d by ϕ : (u, v) 7→

(
ru
lv ,

u−l
u+l

)
.

We show this actually maps a point on E to EE,d. Put x = ru
lv and y = u−l

u+l then we need
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3. Edwards curves

to show x2 + y2 = 1 + dx2y2. We calculate

x2 + y2 − 1− dx2y2 = r2u2

l2v2 + (u− l)2

(u+ l)2 − 1−
(

1− 4 l
3

r2

)
r2u2

l2v2
(u− l)2

(u+ l)2

= r2u2(u+ l)2 + l2v2(u− 1)2 − l2v2(u+ l)2 − r2u2(u− l)2 + 4l3u2(u− l)2

l2v2(u+ l)2 .

Observe

r2u2(u+ l)2 − r2u2(u− l)2 = 4lr2u3

l2v2(u− l)2 − l2v2(u+ l)2 = −4uv2l3.

This yield

x2 + y2 − 1− dx2y2 = 4l3u2(u− l)2 + 4lr2u3 − 4uv2l3

l2v2(u+ l)2

= 4l2u2(u− l)2 + 4r2u3 − 4uv2l2

lv2(u+ l)2

= 4l2u4 + 4l4u2 − 8l3u3 + 4r2u3 − 4uv2l2

lv2(u+ l)2

= 4u(l2u3 + l4u− 2l3u2 + r2u2 − v2l2)
lv2(u+ l)2 .

Since (u, v) is on the curve E the point satisfy identity 3.2. After multiplying with l2

and rearranging we obtain −l2v2 + l2u3 − 2l3u2 + l4u = −r2u2. Using this in the above
calculation we get

x2 + y2 − 1− dx2y2 = 4u(r2u2 − r2u2)
lv2(u+ l)2 = 0.

Proving x2 + y2 = 1 + dx2y2. Exceptional points for ϕ occur when lv = 0 or u = −l
which clearly is only possible for finitely many points. Define a map ψ from EE,d to E
by ψ : (x, y) 7→

(
l 1+y

1−y , r
1+y

x(1−y)

)
. Script 1 in appendix A verify that ψ really map from

EE,d to E. The cases y = 1 and x = 0 are the exceptional cases and clearly occur for only
finitely many points. Now

ϕ ◦ ψ((u, v)) =
(2lu(u+ l)

2l(u+ l) ,
2lrvu(u+ l)
2lru(u+ l)

)
= (u, v)

ψ ◦ ϕ((x, y)) =
(
rl(1 + y)(1− y)x
rl(1 + y)(1− y) ,

2yl(1− y)
2l(1− y)

)
= (x, y)

i.e. ϕ ◦ ψ = id and ψ ◦ ϕ = id. Hence E and EE,d are birationally equivalent.

Let E be an elliptic curve over a field Fp. E is finite and by theorem 1.3.2 also abelian.
By the fundamental theorem for finite abelian groups we may write E as a product of
Z/pkZ for some primes p. Since any elliptic curve over a field Fp is either cyclic or a
product of two cyclic groups (see [10] p. 322 theorem 7.1.3) we do not have the possibility
that e.g. E = Z/2Z×Z/2Z×Z/2Z hence when an elliptic curve E is divisible by 8 it has
a point of order 4 and theorem 3.1.4 show that E is birationally equivalent to an Edwards
curve. This might indicate that we have plenty of Edwards curves.
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3.2. Addition on Edwards curves

3.2 Addition on Edwards curves

We start by defining the addition law on Edwards curves.

Definition 3.2.1. Let EE,d be an Edwards curve and (x1, y1), (x2, y2) two points on it.
The Edwards addition law is given by

(x1, y1), (x2, y2) 7→
(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
(3.3)

Addition on Edwards curves will be denoted +. Noting the danger of ambiguous notation,
the author trusts the reader in telling from the context whether we are adding on an
Edwards curve or a Weierstrass curve.

Example 3.2.2. One motivation for the formula (3.3) may be giving in the shape of the
clock group. Consider the set U of all tuples (x, y) ∈ F2 that satisfy x2 + y2 = 1. On this
set define the addition (see figure 3.6)

(x1, y1), (x2, y2) 7→ (x1y2 + x2y1, x1x2 − y1y2)

One may prove that this addition define a commutative composition making U into a
group with neutral element (0, 1) and with each point (x, y) having inverse (−x, y). For
F = R we may for any point (x, y) in U draw a straight line from that point to the origin
forming an angle α between the positive y-axis and the line in the clockwise direction, see
figure 3.5. Therefore (x, y) = (sinα, cosα) which can be done for all points in U . Recall
the addition laws for sine and cosine

sin(α1 + α2) = sinα1 cosα2 + cosα1 sinα2

cos(α1 + α2) = cosα1 cosα2 − sinα1 sinα2.

Comparing this addition with the addition in U and addition on Edwards curves reveals
some similarities.

Figure 3.5: Angle of a point in the clock group
over R.

Figure 3.6: Addition in the clock group over R.
P =

(√
3

2 ,
1
2

)
, Q =

(
1
2 ,
√

3
2

)
and P +Q = (1, 0).

We will show that the addition law (3.3) satisfy what we need. In theorem 3.2.4 we
prove that the Edwards addition maps (when defined) to the Edwards curve, theorem
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3. Edwards curves

3.2.5 shows that ordinary addition on the birationally equivalent elliptic curve in 3.1.4
corresponds to addition on the Edwards curve. Finally in theorem 3.2.8 we prove a very
strong property Edwards addition possess.

Remark 3.2.3. The neutral element for Edwards addition is (0, 1) and the inverse for a
point (x, y) is (−x, y). An Edwards curve always has two points of order 4 namely (1, 0)
and (−1, 0). This is immediate from the calculation

(1, 0) + (1, 0) + (1, 0) + (1, 0) = (0,−1) + (0,−1) = (0, 1)

(−1, 0) + (−1, 0) + (−1, 0) + (−1, 0) = (0,−1) + (0,−1) = (0, 1)

Notice that {(0, 1), (0,−1), (1, 0), (−1, 0)} defines a group with the Edwards addition. In
general the addition formula is unified; it works for both squaring and addition.

Theorem 3.2.4. Let EE,d be an Edwards curve and let (x1, y1), (x2, y2) be points on EE,d.
Assume 1 ± dx1x2y1y2 6= 0. Define x3 = x1y2+y1x2

1+dx1x2y1y2
and y3 = y1y2−x1x2

1−dx1x2y1y2
. Then (x3, y3)

is a point on EE,d.

Proof. There is really no magic involved in this proof - only humdrum. We must prove
x2

3 + y2
3 = 1 + dx2

3y
2
3.

First we need an identity. Let

δ = (x1y2 + y1x2)2(1− dx1x2y1y2)2 + (y1y2 − x1x2)2(1 + dx1x2y1y2)2

Then one can check with e.g. Sage or Maple, the following

δ = (x2
1 + y2

1 − (x2
2 + y2

2)dx2
1y

2
1)(x2

2 + y2
2 − (x2

1 + y2
1)dx2

2y
2
2) + d(x1y2 + y1x2)2(y1y2 − x1x2)2

Script 2 in appendix A verifies this. Since (x1, y1) and (x2, y2) are both points on EE,d

they satisfy

x2
1 + y2

1 = 1 + dx2
1y

2
1 (3.4)

x2
2 + y2

2 = 1 + dx2
2y

2
2. (3.5)

Multiplying (3.4) with dx2
2y

2
2 and subtracting the new identity from (3.5) yield

x2
2 + y2

2 − (x2
1 + y2

1)dx2
2y

2
2 = 1− (dx1x2y1y2)2. (3.6)

Similarly by multiplying (3.5) with dx2
1y

2
1 and subtraction this from (3.4) we get

x2
1 + y2

1 − (x2
2 + y2

2)dx2
1y

2
1 = 1− (dx1x2y1y2)2. (3.7)

When substituting (3.6) and (3.7) into the identity for δ we obtain

δ = (1− (dx1x2y1y2)2)2 + d(x1y2 + y1x2)2(y1y2 − x1x2)2.
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3.2. Addition on Edwards curves

The finishing touch is obvious now:

x2
3 + y2

3 =
(
x1y2 + y1x2

1 + dx1x2y1y2

)2
+
(
y1y2 − x1x2

1− dx1x2y1y2

)2

= (x1y2 + y1x2)2(1− dx1x2y1y2)2 + (y1y2 − x1x2)2(1 + dx1x2y1y2)2

(1 + dx1x2y1y2)2(1− dx1x2y1y2)2

= δ

(1 + dx1x2y1y2)2(1− dx1x2y1y2)2

= (1− (dx1x2y1y2)2)2 + d(x1y2 + y1x2)2(y1y2 − x1x2)2

(1 + dx1x2y1y2)2(1− dx1x2y1y2)2

= (1− (dx1x2y1y2)2)2

(1− (dx1x2y1y2)2)2 + d
(x1y2 + y1x2)2(y1y2 − x1x2)2

(1 + dx1x2y1y2)2(1− dx1x2y1y2)2

= 1 + d

(
x1y2 + y1x2

1 + dx1x2y1y2

)2 ( y1y2 − x1x2
1− dx1x2y1y2

)2

= 1 + dx2
3y

2
3.

Script 3 in appendix A also verifies theorem 3.2.4. Imagine an application where you
need to calculate a series of computations on an elliptic curve say nP1 +mP2 were P1 and
P2 are points on the curve. If n and m are large, reducing the cost of addition on the
elliptic curve is preferable. In section 3.3 we will see that arithmetic on Edwards curves
are way faster than arithmetic on a Weierstrass curve. Actually we will see that arithmetic
on Edwards curves is superior to almost all known schemes of addition on elliptic curves.

The following shows that it is possible to change to an Edwards curve if there exists a
biratinal equivalence between an Edwards curve and the elliptic curve.

Theorem 3.2.5. Assume the situation from theorem 3.2.4. Let EE,d be an Edwards curve
and E be the elliptic curve 1

1−dv
2 = u3 + 2

(
1+d
1−d

)
u2 + u. For i = 1, 2, 3 define

Pi =


O (xi, yi) = (0, 1)

(0, 0) (xi, yi) = (0,−1)(
1+yi
1−yi , 2

1+yi
(1−yi)xi

)
xi 6= 0

(3.8)

where (xi, yi) are points on EE,d and (x1, y1) + (x2, y2) = (x3, y2). Then Pi ∈ E(F) and
P1 + P2 = P3.

Proof. Notice that if yi = 1 then x2 + 1 = 1 + dx2 if and only if x2(1 − d) = 0. Hence
x = 0 otherwise d = 1 contradicting Ed being an Edwards curve. That is, in (3.8) we will
not assign Pi with the last case when yi = 1.
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3. Edwards curves

We show Pi ∈ E(F) by splitting into the three cases in (3.8). The first two are obvious.
Therefore assume the last case. Put xi = x and yi = y. We simple calculate

(1− y)3(1− d)
y + 1

((1 + y

1− y

)3
+ 2

(1 + d

1− d

)(1 + y

1− y

)2
+ 1 + y

1− y

)
= (1 + y)2(1− d) + 2(1 + d)(1 + y)(1− y) + (1− y)2(1− d)

= (1 + 2y + y2)(1− d) + 2(1 + d)(1− y2) + (1− 2y + y2)(1− d)

= 1 + 2y + y2 − d− 2dy − dy2 + 2− 2y2 + 2d− 2dy2 + 1− 2y + y2 − d+ 2dy − dy2

= 4(1− dy2)

= 4
(

1− 1− x2 − y2

x2

)

= 4(1− y)(1 + y)
x2 .

Multiply through with y+1
(1−y)3(1−d) to obtain(1 + y

1− y

)3
+ 2

(1 + d

1− d

)(1 + y

1− y

)2
+ 1 + y

1− y = 4 (1 + y)2

(1− y)2x2 =
(

2 1 + y

(1− y)x

)2

Proving Pi ∈ E(F).
We are left with the task of proving P1 + P2 = P3. This will split into several cases.
If (x1, y1) = (0, 1) then P1 = O and (x3, y3) = (x1, y1) + (x2, y2) = (x2, y2). Thus

P1 + P2 = O + P2 = P2 = P3. Same arguments work if (x2, y2) = (0, 1). For the rest we
therefore assume (x1, y1) and (x2, y2) is not (0, 1).

If (x3, y3) = (0, 1) then (x1, y1) = (−x2, y2) and P3 = O. We must show P1 = −P2.
Suppose (x1, y1) = (0,−1) then (x2, y2) = (0,−1) and P1 = (0, 0) = P2 so P1 = −P2.
Symmetric if (x2, y2) = (0,−1). If the latter is not the case, x1, x2 6= 0. Then

P1 =
(1 + y1

1− y1
, 2 1 + y1

(1− y1)x1

)
=
(1 + y2

1− y2
, 2 1 + y2

(1− y2)(−x2)

)
= −P2

From now on assume (x3, y3) 6= (0, 1)
If (x1, y1) = (0,−1) then P1 = (0, 0) and (x3, y3) = (0,−1) + (x2, y2) =

(
−x2

1 , −y2
1

)
=

(−x2,−y2). This imply (x2, y2) 6= (0,−1) otherwise (x3, y3) = (0, 1) which has been
handled. Thus x2 6= 0 and we have

u2 = 1 + y2
1− y2

, v2 = 2 1 + y2
(1− y2)x2

= 2u2
x2

such that P2 = (u2, v2). u2 and v2 satisfy 1
1−dv

2
2 = u3

2 + 21+d
1−du

2
2 + u2 (by theorem 3.2.4).

Multiplying with 1
u2

2
(y2 6= −1 hence u2 6= 0) and rearranging we get 1

1−d

(
v2
u2

)2
− u2 −

21+d
1−d = 1

u2
. Now standard addition on E give P1 + P2 = (0, 0) + (u2, v2) = (l3, r3) where

l3 = 1
1− d

(
v2 − 0
u2 − 0

)2
− 21 + d

1− d − u2 − 0 = 1
u2

r3 = v2 − 0
u2 − 0 (0− l3)− 0 = − v2

u2
2
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3.2. Addition on Edwards curves

Also

P3 =
(1 + y3

1− y3
, 2 1 + y3

(1− y3)x3

)
=
(1− y2

1 + y2
,−2 1− y2

(1 + y2)x2

)
=
( 1
u2
,−2 1

u2x2

)
=
(
l3,−2 u2

u2
2x2

)
=
(
l3,−

v2
u2

2

)
= (l3, r3)

Thus P1 + P2 = P3. If (x2, y2) = (0,−1) similar arguments apply.
For the rest of this proof we assume x1, x2 6= 0. We can now put Pi = (ui, vi) with

ui = 1+yi
1−yi and vi = 2uixi for i = 1, 2.

If (x3, y3) = (0,−1) then (x1, y1) = (x1, y1) + (x2, y2)− (x2, y2) = (x3, y3)− (x2, y2) =
(0,−1) + (−x2, y2) = (x2,−y2) and P3 = (0, 0). With almost the same calculations as
before u1 = 1

u2
and v1 = v2

u2
2
. As before we have

−P3 + P2 = (0, 0) + P2 =
( 1
u2
,− v2

u2
2

)
= (u1,−v1) = P1

proving P1 + P2 = P3. Script 4 in appendix A verifies that P1 + P2 = P3 in the above
case. Now we can also assume x3 6= 0 and put P3 = (u3, v3) with u3 = 1+y3

1−y3
and v3 = 2u3

x3
.

If P1 = −P2 then u1 = u2 and v1 = −v2. Thus x1 = 2u1
v1

= 2u2
v2

= x2 and y1 = u1−1
u1+1 =

u2−1
u2+1 = −y2 implying (x3, y3) = (0, 1). This case has already been handled. Assume form
now on that P1 6= −P2.

If u1 = u2 and v1 6= −v2 (we assume P1 6= −P2). Then by the standard addition law
we get l3 = 1

1−dm
2 − 21+d

1−d − 2u1, r3 = m(u1 − l3)− v1, m = 3u2
1+4((1+d)/(1−d))u1+1

(2/(1−d))v1
where

(x1, y1) + (x2, y2) = (l3, r3). As before it is (with a lot of paper) straight forward to verify
(l3, r3) = (u3, v3).

Last(!) case: If u1 6= u2. Again using the standard addition law we obtain m = v2−v1
u2−u1

,
l3 = 1

1−dm
2 − 21+d

1−d − u1 − u2 and r3 = m(u1 − l3)− v1 with (u1, v1) + (u2, v2) = (l3, r3).
One can again check that (l3, r3) = (u3, v3). This and the latter case is checked in [12].

We are done!

Remark 3.2.6. In the proof above we used several times that the only points on an Edwards
curve with zero x-coordinate are (0, 1) and (0,−1). This is immediate if we substitute
x = 0 in the defining equation of an Edwards curve: 1 = y2 so 0 = (1 − y)(1 + y). We
also used a generalized form of addition; an elliptic curve on the form By2 = x3 + cx2 + x

is called a Montgomery curve. Addition formulas for this kind of curve differ a little with
respect to the usual addition formulas for addition on elliptic curves. Namely (1.7) change
to x3 = Bm2 − c− x1 − x2, (1.8) stays as it is and

m =


y2−y1
x2−y2

x2 6= x1
3x2

1+2cx1+a
2By1

x2 = x1

We can now show that the condition in theorem 3.1.4 is not only a sufficient condition
but a necessary condition.
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3. Edwards curves

Theorem 3.2.7. Let E be an elliptic curve over F. If E is birationally equivalent to an
Edwards curve, the group E(F) has an element of order 4.

Proof. Assume E is birationally equivalent over F to an Edwards curve EE,d. With the
rational map (x, y) 7→

(
1+y
1−y , 2

1+y
(1−y)x

)
we map points on EE,d too the elliptic curve E′ :

1
1−dv

2 = u3 +21+d
1−du

2 +u. The inverse map is (u, v) 7→
(
2uv ,

u−1
u+1

)
. This gives a birationally

equivalence between EE,d and E′ thus also a birationally equivalence between E and E′.
In theorem 3.2.5 we saw that addition on EE,d corresponds to addition on the elliptic
curve E′. Since the point (1, 0) on EE,d has order 4 the corresponding point on E′ also
has order 4 and E must have a point of order 4.

It turns out that in some cases the addition formula on Edwards curves is even complete
i.e works for all input; in this case any addition on the Edwards curve is without risk of
failure.

Theorem 3.2.8. Let EE,d be an Edwards curve. Assume d is not a square. Let (x1, y1)
and (x2, y2) be points on EE,d. Then 1± dx1x2y1y2 6= 0.

Proof. This will be a proof by contradiction. Let δ = dx1x2y1y2 and suppose for the sake
of contradiction that δ = ±1. It follows x1, x2, y1, y2 6= 0. Then

(x1 + δy1)2 = x2
1 + δ2y2

1 + 2x1y1δ = x2
1 + (−1)2y2

1 + 2x1y1δ

= 1 + dx2
1y

2
1 + 2x1y1δ = δ2 + dx2

1y
2
1 + 2x1y1δ

= dx2
1y

2
1 + d2x2

1x
2
2y

2
1y

2
2 + 2x1y1δ = dx2

1y
2
1(1 + dx2

2y
2
2) + 2x1y1δ

= dx2
1y

2
1(x2

2 + y2
2) + 2x1y1δ = dx2

1y
2
1(x2

2 + y2
2) + 2x1y1d

2x2
1x

2
2y

2
1y

2
2

= dx2
1y

2
1(x2

2 + 2x2y2 + y2
2) = dx2

1y
2
1(x2 + y2)2.

If x2 + y2 6= 0 (recall x1, y1 6= 0) then d =
(

x1+δy1
x1y1(x2+y2)

)2
contradicting d being a non-

square. One can do similar calculations as above and get (x1 − δy1)2 = dx2
1y

2
1(x2 − y2)2.

If x2 − y2 6= 0 then d =
(

x1−δy1
x1y1(x2−y2)

)2
contradiction. Hence x2 + y2 = 0 and x2 − y2 = 0.

We quickly spot 0 = (x2 + y2) + (x2 − y2) = 2x2 and 0 = 2y2. Since char(F) 6= 2 we get
x2, y2 = 0 our final contradiction.

We will not be using this property in the implementation since we go for speed not
for this simplicity or as we shall see now, security. Consider an implementation of some
cryptographic scheme using double-scaler-multiplication on elliptic curves i.e [n]P +[m]Q.
The usual addition formulas for the Weierstrass model has several exceptional cases and an
irritating distinction between addition and doubling; you can not double a point as P +P

and use the addition formula. The plethora of cases has caused a variety of problems,
in particular, when in [16] Paul Kocher described a timing attack of several widely used
crypto systems an laid the ground for side-channel attacks. In recent times timing attacks
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3.3. Efficient operations on Edwards curves

are exploiting the property that addition and doubling are different operations enabling
that the involved secrets could be revealed from only a single execution of the used algo-
rithm. Several countermeasures such as adding dummy operations or rewriting formulas
are known and used, but the complete addition formula for Edwards curves solves this in
one sweep move.

3.3 Efficient operations on Edwards curves

In this section we introduce efficient formulas for computing on Edwards curves and com-
pare these formulas to other popular schemes. Efficiency of the operations are ordered by
the number of operations in the underlying field. In particular we count; number of multi-
plications M (each costing M), number of squarings S (each costing S), multiplication by
d costing D (each costing D) and number of additions/subtractions A (each costing A).
We do not keep track of inversions since we avoid these by using projective coordinates.

The reader may wonder why we keep a separate tally of squaring when a squaring
is essentially a multiplication. It is true that squaring and multiplication both has the
same complexity, but multiplication algorithms normally simplify when inputting a square
which will speed up squaring by a constant factor.

The reason for avoiding inversions is the known fact that inversions is inefficient com-
pared to doing multiplications or additions. Of course the ratio inversion/multiplication
differ depending on which platform and hardware being used, but generally one should
expect a factor that is quite high. For instance in [12] Bernstein and Lange use I/M = 100.

To avoid inversions when computing on Edwards curves we homogenize the Edwards
curve to (x2 + y2)z2 = z4 + dx2y2. A point [x, y, z] corresponds to the affine point

(
x
z ,

y
z

)
for z 6= 0. Putting the two points

(
x1
z1
, y1
z1

)
and

(
x2
z2
, y2
z2

)
into the addition formula for the

Edwards curve yields

x1y2+x2y1
z1z2

1 + dx1x2y1y2
z2

1z
2
2

= (x1y2 + x2y1)z1z2
z2

1z
2
2 + dx1x2y1y2

= (x1y2 + x2y1)z1z2(z2
1z

2
2 − dx1x2y1y2)

(z2
1z

2
2)2 − (dx1x2y1y2)2

y1y2−x1x2
z1z2

1− dx1x2y1y2
z2

1z
2
2

= (y1y2 − x1x2)z1z2(z2
1z

2
2 + dx1x2y1y2)

(z2
1z

2
2)2 − (dx1x2y1y2)2 .

Put δ = dx1x2y1y2. Addition on the projective form of the Edwards curve is (with
z1, z2 6= 0)

([x1, y1, z1], [x2, y2, z2]) ADD7→(
(x1y2 + x2y1)z1z2(z2

1z
2
2 − δ), (y1y2 − x1x2)z1z2(z2

1z
2
2 + δ), (z2

1z
2
2)2 − δ2

)
.

The neutral element is [0, 1, 1] and if [x, y, z] is a point on the homogenized curve then
[−x, y, z] is the inverse. Rewriting x1y2 + x2y1 = (x1 + x2)(y1 + y2) − x1x2 − y1y2 and
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3. Edwards curves

exploiting different common sub expressions one may count 10M+1S+1D+7A for one
addition.

In some cases we may save 1M namely in a mixed addition; an additions with z2 = 1.
In this case we do not need to do the calculation z1z2. The count for mixed addition then
reads 9M+1S+1D+7A for one mixed addition.

Doublings are even faster. Using the ordinary addition on Edwards curves with two
equal points yield(

xy + yx

1 + dx2y2 ,
y2 − y2

1− dx2y2

)
=
(

2xy
x2 + y2 ,

y2 − x2

2− x2 − y2

)
=
(

2xy
x2 + y2 ,

x2 − y2

x2 + y2 − 2

)

using that (x, y) satisfy x2+y2 = 1+dx2y2. In projective coordinates the doubling formula
is (z 6= 0)

([x, y, z]) DUP7→
(
2xy(2z2 − (x2 + y2)), (x2 − y2)(x2 + y2), (x2 + y2)(x2 + y2 − 2z2)

)
.

Again rewriting 2xy = (x+y)2−x2−y2 and exploiting common sub expressions we count
3M+4S+6A for one duplication. Notice this formula is independent of d.

Register allocations for the above formulas are given in section 4.4 where one easily
read of the counts stated above.

In [5] Bernstein and Lange among other things, did a survey on the efficiency of
several additions schemes in the literature. They gathered addition and squaring counts
for different curves and coordinates systems and compared them. The results presented
in their article clearly shows that Edwards curves provide one of the fastest addition
and doubling known in the literature. Using Edwards curves Bernstein and Lange has
discovered even faster formulas. In [6] they presented inverted edwards coordinates; a point
[x, y, z] with xyz 6= 0 on the projective curve (x2+y2)z2 = x2y2+dz4 corresponds to

(
z
x ,

z
y

)
.

They report costs of addition and doubling as: 9M+1S+1D+1A and 3M+4S+1D+1A
respectively. Compared to the provious formalus we trade 1M in the addition formula
with a 1D in the doubling formula.
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Chapter 4

ECM using Edwards curves

This chapter serves as documentation for the implementation of ECM using Edwards
curves the author made in connection with this thesis. We describe which techniques and
speed ups we use. We also include a section of experiments/statistics that should provide
an overview of the efficiency of the implementation. In the following the program will be
refered to as EECM_Torben.

Generally any implementation of ECM that needs to be fast are essentially faced with
the two following algorithmic challenges: Fast modular arithmetic and efficient curve
operations. Efficient modular arithmetic will be provided by the BigInteger library in
Java and is therefore not a class implemented by the author. This is discussed in section
4.3. Efficient curve operations is provided by (as you may have guessed) arithmetic on
Edwards curves. How Edwards curves relate to the elliptic curve factorization method is
discussed in 4.1.

EECM_Torben has the same general structure as algorithm 2.2.1 but with some major
differences.

• EECM_Torben use Edwards curves instead of Weierstrass curves, and therefore
instead of picking a curve EW,a,b(Z/nZ) we pick an Edwards curve EE,d and calculate
over Z/nZ.

• When we have computed [s]P we check the gcd between the x-coordinate and n.
This is because the neutral element on the Edwards curve is (0, 1) (in projective
[0, 1, 1]). At a first glance the addition formula in 3.3 seems to allow a factor of n
not to accumulate in the x-coordinate i.e. if one time during the calculation of [s]P
we find a factor of n it is not clear that this factor remain present in the x-coordinate.
But by inspecting the source code of EECM_Torben one sees that factors indeed
do accumulate, because we use the x-coordinate from the newly computed point as
x2 in the next iteration (see also algorithm 4.4.3). In the ordinary ECM algorithm
one would check the z-coordinate when using projective Weierstrass coordinates.
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4. ECM using Edwards curves

• We use a second stage method to improve the probability of finding a factor. This
implementation is discussed in section 4.2.

• The calculation of [s]P is done using a NAF representation of the primes. This is
discussed in section 4.4.

• We do not check for gcd(6, n) and n not being a perfect power. In practice EECM_Torben
find primes in n whether or not it is a perfect power and since checking for n being
a perfect power is not extremely cheap we neglect this. Instead of checking the gcd
between 6 and n we instead do a trial division for all primes from 2 to 1000. these
primes has been hard coded into EECM_Torben and it is therefore really fast to
do this check and is much more efficient than only trying to find a factor of 2 or 3
in n. Actually the bound 1000 may be varied depending of n but it all comes down
to how much time one want to spend doing trial division versus the time it takes to
execute the rest of the algorithm.

4.1 Using Edwards curves

There are obvious improvements from using Edwards curves. In 3.3 we saw that arithmetic
on Edwards curves is more efficient than doing arithmetic on Weierstrass curves and
actually the formulas is some of the most efficient known. Also the reduced curve order
is certain to be divisible by 4 because of theorem 3.2.7. Heuristically this give a better
chance of being smooth.

We also expect the approximate same complexity as the original ECM presented and
analysed in chapter 2. This is because, reducing an Edwards curve, say EE,d, over a
positive integer n with a prime p dividing n would give an ordinary Edwards curve. From
remark 3.2.6 we see that if EECM_Torben hit a point with a x-coordinate that is divisible
by p then it is probably the neutral element for the reduced Edwards curve by p. Theorem
3.2.5 shows that the calculations that were done on the reduced Edwards curve corresponds
to an birationally equivalent elliptic curve and that we from the reduced Edwards curve has
hit the neutral element on the corresponding elliptic curve. Using the same considerations
that we did in section 2.3 we see that the complexity should be unchanged.

4.2 Stage two

Stage 2 in EECM_Torben is implemented as described in section 2.4 (using the last
version). The implementation is called the standard continuation, but is implemented
with some speed up tricks.

In places where we need to add the same point to another a lot of times we normalize
the point. This require 1I+2M but if e.g. I/M = 150 we still save multiplications as long
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4.3. Modular arithmetic

a we have to add the given point over approximately 150 times because a mixed addition
is 1M cheaper than a dedicated addition.

We also store multiples of 2 of the point Q =
[∏

p
ai
i ≤B1

paii

]
P up to some limit.

This limit actually do not need to be very large! We do a little analysis. We need the
precomputed points to calculate [pi+1 − pi]Q i.e. we need to pre compute [2s]Q up to the
biggest prime gap for primes below B2. If gn = pn+1 − pn denotes the prime gap between
the nth and (n+ 1)th prime then a maximal prime gap is a gap gn such that gn > gm for
all m < n. The distribution of the length of prime gaps is not that well understood, but
there exists numerical results of maximal prime gaps for huge numbers (far greater than
we need). On http://www.trnicely.net/gaps/gaplist.html Thomas Nicely host list
of prime gaps including the maximal ones (in the lists these are indicated by an asterix
mark). Since the magnitude of primes in EECM_Torben is bounded to approximately 1.4
billion due to memory requirements, we do not need many multiples of 2 in our second
stage. If one looks in Nicely’s table one see that the maximal prime gap below 1.4 billion
is 320 and since we only need multiples of 2 we need at most 160 precomputed points.
This saves foremost a lot compared to computing e.g. B2

2 multiples (which would be the
naive choice) but memory requirements is also greatly reduced.

There exists several improvements to the 2. stage. We give a high level description
of some of these. One approach is: Take two integers τ and σ and compute [τ ]Q + [σ]Q
where Q is the point after the first stage. Set [τ ]Q = (xτ , yτ ) and [σ]Q = (xσ, yσ). If
[τ ]Q+ [σ]Q = O mod p then xτ ≡ xσ mod p and gcd(xτ − xσ, n) > 1. The way τ and σ
is picked is how different continuations of this form differ. The birthday paradox form is
to pick σ ∈ T and τ ∈ S in two set T, S ⊂ N. T and S are either picked out random or
as geometric progressions. One then hope that all combinations τ + σ hits all primes in
[B1, B2]. In addition one might hit larger primes. This approach may be optimized using
fast polynomial arithmetic. A popular choice is to use a Fast Fourier Transformation. An
extension of this kind is called a FFT extension. The polynomial arithmetic is applied,
in different ways to obtain

∏
τ∈S

∏
σ∈T (xσ − xτ ) mod n in a fast way. For more 2. stage

continuations consult [24].

4.3 Modular arithmetic

As mentioned, the modular arithmetic is provided by the BigInteger library from Java’s
standard library. There is two main reason for choosing this option. The first is while
implementing a new big number library is doable then since the BigInteger library has
been developed trough several years, creating a library that is faster must be considered
a low probability event and something which would take a lot of time. The other reason
is that it is not the scope of this thesis to develop a new big number library. We do not
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4. ECM using Edwards curves

claim that a development of an efficient dedicated ring library is not worth the effort. It
will with out doubt speed up computations because the BigInteger library we use is a big
number library where modular arithmetic has been added subsequently.

A reference to the methods used from the BigInteger library inside EECM_Torben is
http://docs.oracle.com/javase/6/docs/api/java/math/BigInteger.html

4.4 Single-scalar multiplication

The most time consuming operation in EECM_Torben is the calculation of
[∏

pαi≤B1 p
αi
]
P

also called a single-scalar multiplication, see algorithm 2.2.1. For this to be fast we need
efficient formulas for doubling and addition/subtraction on the Edwards curve and a good
strategy for computing the point. We do not compute the product

∏
pαi≤B1 p

αi and then
calculate the point. Instead we do one prime at a time. First we discuss the arithmetic.

We saw in chapter 3 that the addition law is complete when d is a non square. This is,
as mentioned, a really good property if one want to use Edwards curves in cryptography
or simplify code. But in this thesis we do not go for simplification, we go for speed.
Since doubling on Edwards curves is faster than ordinary addition, we will not use the
property of completeness. Instead we actually neglect the possibility that a non defined
addition/doubling could occur; when n is very large the probability that dx1x2y1y2 = ±1
is very little. Below is shown register allocations of how we compute in EECM_Torben
using the formulas discussed in 3.3. The formulas are implemented in the class Edward.

Register allocations. In the following r1, r2 and r3 contains x1, y1 and z1 respec-
tively. r4, r5 and r6 likewise contains x2, y2 and z2. r7 and r8 are temporary registers.

Addition [x1, y1, z1] + [x2, y2, z2] (from left to right):

r3 ← r3 · r6, r7 ← r1 + r2, r8 ← r4 + r5, r1 ← r1 · r4, r2 ← r2 · r5, r7 ← r7 · r8

r7 ← r7 − r1, r7 ← r7 − r2, r7 ← r7 · r3, r8 ← r1 · r2, r8 ← d · r8, r2 ← r2 − r1,

r2 ← r2 · r3, r3 ← r2
3, r1 ← r3 − r8, r3 ← r3 + r8, r2 ← r2 · r3, r3 ← r3 · r1,

r1 ← r1 · r7.

Doubling 2[x1, y1, z1] (from left to right):

r4 ← r1 + r2, r1 ← r2
1, r2 ← r2

2, r3 ← r2
3, r4 ← r2

4, r3 ← r3 + r3, r5 ← r1 + r2,

r2 ← r1 − r2, r4 ← r4 − r5, r3 ← r5 − r3, r1 ← r3 · r4, r3 ← r3 · r5, r2 ← r2 · r5.

Mixed addition does not need the first computation in the addition allocations. Sub-
traction is done by first calculating the additive inverse and then call addition. This means
that subtraction cost a very tiny bit more than addition.

NAF. Here we describe the strategy used to compute
[∏

pαi≤B1 p
αi
]
P in particular

we describe the addition chain being used. Say A is an array containing the primes from 2
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4.4. Single-scalar multiplication

Algorithm 4.4.1 Basic calculation of
[∏

pαi≤B1 p
αi
]
P

for i = 0→ |A| − 1 do
p = A[i]
j = 1
while pj ≤ B1 do
P = [p]P
j = j + 1

end while
end for

to B1. We want to optimize the following computation where P is some point First idea
is to use a binary ladder. If a number β is written in its binary decomposition β =

∑
i ai2i

with ai ∈ {1, 0}, on average 1
2 of the numbers ai is zero. We are not satisfied with

that. Instead we use a NAF (Non-adjacent form) representation introduced by Reitwieser
in [22]. We use the property that any number β may be written as β =

∑
i bi2i with

bi ∈ {1, 0,−1} and the additional property bibi+1 = 0. This may add one additional bit
to the representation compared to the binary decomposition but instead on average 2

3 of
the bi’s are 0 (proved by Morain and Olivos in [20]). Generally the NAF representation is
a unique signed-digit representation but in our representation we do not need a sign and
hence the most significant bit is always 1. The two algorithms 4.4.2 and 4.4.3 compute
what we need in EECM_Torben

Algorithm 4.4.2 Compute NAF representation
Input: Positive integer n.
Output: NAF representation (n0, n1, . . . , ni) of n.
j = 0
while n > 0 do
if n odd then
nj = 2− [n]4
n = n− nj

else
nj = 0

end if
n = n

2
j = j + 1

end while

Notice that in algorithm 4.4.2 if n is odd in some iteration of the while loop, we make n
divisible by 4. Hence when we divide out by two in the end of the while loop, The number
remains even and therefore the next bit will be set to 0 forcing the condition bjbj+1 = 0.
If n is an i bit number then its NAF representaion has either i or i+ 1 bits.

Compared to algorithm 4.4.1, algorithm 4.4.3 has several advantages. The number
of additions is greatly reduced and we trade a lot of dedicated additions with doublings
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4. ECM using Edwards curves

Algorithm 4.4.3 NAF calculation of
[∏

pαi≤B1 p
αi
]
P

Input: Point P and a table of primes Q from 1 to B1.
Output: The single scalar multiplication

[∏
pαi≤B1 p

αi
]
P

for i = 0→ |Q| − 1 do
j = 1
p = Q[i]
while pj ≤ B1 do
Compute NAF of p; (n0, n1, . . . , nl), using algorithm 4.4.2
P = P
for s = l→ 1 do
P.dup()
if ns = 1 then
P = P.add(P )

end if
if ns = −1 then
P = P.sub(P )

end if
end for
P = P
j = j + 1

end while
end for

which is cheaper.

There exists various other single-scalar multiplication schemes that can be deployed.
Instead of using a window of 2 one could use a window of 4 or even greater. In [3] Bernstein
et al. also discusses a double-base single-scalar multiplication with a basis {2, 3}. Another
method is to use a sliding window; compute point [a]P where a is a member of some basis
e.g. {1, 2, 3, 4, 9}. This is also discussed in the paper by Bernstein et al.

4.5 Bounds B1 and B2

Bounds B1 and B2 are really the key if one wants to find a factor. In section 2.3 we
saw that finding a factor, say p, of n really depends on whether the curve order of the
reduction with p is B1−power smooth or not. B1 could be picked optimal if p is known,
but of course this knowledge will totally ruin the need for using ECM. Instead one must
experiment with different values. In practice, what is done is that one value B1 is run
sufficiently many times without success for one to become convinced that a higher value
is called for. One normally starts with a low B1 value (In EECM_Torben the default
value for B1 is 10000 and for B2 its 100000) and maybe increase by a factor of 100, or
double the value. The bound B2 is also a debatable value. In [10] (p. 343) it is suggested
that when using a highly efficient second stage (such as a FFT extension) one should
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pick B2 ≈ 100B1. In EECM_Torben we use B2 = 10B1 since we do not use the highly
advanced speed ups discussed in [10]. This also depends on your baby (your computer
red.). The conventional wisdom is that stage 1 and stage 2 should take an approximate
equal amount of time to process one curve.

In [23] Silverman and Wagstaff propose optimal values for B1 and B2 depending on
the factor size one is searching for. That is, if we search for a factor size of 20 digits say,
they suggest values for B1 and B2 that give a high probability of finding this factor. Paul
Zimmermann has likewise computed optimal parameters for the bound B1 and suggest the
expected amount of curves which is needed with respect to the factor size one search for.
This can be found here http://www.loria.fr/~zimmerma/records/ecm/params.html.
It should be taken into account that these estimates are relatively old i.e. was made before
the invention of more advanced second stage methods (e.g. the FFT 2. stage).

Considering the former discussion the author has made the bounds in EECM_Torben
configurable by the flags −B1 and −B2 e.g. if a user wants to change the bounds to
B1 = 106 and B2 = 107 one input −B1100000 −B21000000. The program does not allow
a B2 value that is lower than B1. Also a factor size flag has been added implementing
Zimmermans scheme; accessed by the flag −FS e.g. if one search for a factor of size, say
23 digit, then input option −FS23. Note that both inputting a factor size and bounds
will make the program skip the factor size option.

4.6 Curve selection

EECM_Torben is using the following method for picking a suitable curve. Pick x, y ∈
R

Z/nZ such that gcd(xy, n) = 1. Then we may set (x2 + y2 − 1)(x2y2)−1 = d and check if
d 6= 1 (In practice we do not need to check for d = 0). If one of these checks is false, then
pick two new elements in Z/nZ. (x, y) is now a point on the Edwards curve EE,d over
Z/nZ. Below we discuss other (and possible more efficient) ways to do it. The theory
behind is not discussed in this thesis and proof are omitted, but references are given. To
specify the number of curves EECM_Torben should maximally process input the option
−NC.

In [4] Bernstein et al. present two different parametrisations for Edwards curves (and
one for the more general twisted Edwards curves); the Atkin-Morain construction and the
Montgomery construction which are both well known constructions for ordinary elliptic
curves, is translated to Edwards curves. The Atkin-Morain and Montgomery construction
force torsion groups Z/2Z × Z/8Z and Z/12Z respectively. Below we present the two
different construction.

Theorem 4.6.1. (Atkin-Morain on Edwards curves) Pick a point (s, t) on EW,−8,−32(Q)
and define α =

(
t+25
s−9 + 1

)−1
, β = 2α 4α+1

8α2−1 and d = 2(2β−1)2−1
(2β−1)4 . Then EE,d has torsion
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4. ECM using Edwards curves

group isomorphic to Z/2Z × Z/8Z and a point (x, y) with x = (2β−1)(4β−1)
6β−5 and y =

(2β−1)(t2+50t−2s3+27s2−104)
(t+3s−2)(t+s+16)

Finding points (s, t) may be done by choosing (s, t) = (12, 40) and computing multiples.

Theorem 4.6.2. (Montgomery on Edwards curves) Pick a point (s, t) on EW,−12,0(Q)
with (s, t) /∈ {(0, 0), (−2,±4), (6,±12)}. Define d = −(s−2)3(s+6)3(s2−12s−12)

1024s2t2 . Then EE,d

has torsion group isomorphic to Z/12Z and point (x, y) with x = 8t(s2+12)
(s−2)(s+6)(s2+12−12 and

y = −4s(s2−12s−12)
(s−2)(s+6)(s2−12)

In [4] the authors went even further than ensuring large torsion groups. They con-
structed curves with small parameters, large torsion and positive rank which, heuristically,
should give a speed up. These “good curves” can be found on http://eecm.cr.yp.to/

goodcurves.html. This optimization has not been implemented in EECM_Torben.

4.7 Prime generation

We need a lot of primes for both stage 1 and 2. The number of primes is bounded by
the stage 2 bound B2. For finding these primes we use Eratosthenes sieve. This works
by first creating a list from 2 to B2 (if B2 is odd otherwise we only need up to B2 − 1).
Take the smallest number in the list; 2, and cross out all its multiples up to B2. Continue
by taking the next number in the list that has not been crossed (this will be 3) out and
cross out all the multiples of this number up to B2. Continue by taking the next number
in the list that has not been crossed out (will be 5) and cross out all the multiples of this
number up to B2.... Continue until we reach

√
B2. All numbers not crossed out are the

primes up to B2.

The implementation of Eratosthenes sieve is provided by the author. We use several
speed ups e.g. to minimize the memory needed we only store odd numbers and we only
check odd multiples of a prime. This sieving method is extremely fast; amortized using
only O(log logB2) work per prime. The drawback is the memory requirement. We save a
factor of 2 by only storing odd numbers but we are still in the need of B2

2 space. It is not
optimal but sufficient for our purpose.

Some optimizations for the memory use and speed is: Use a segmented sieve where
sieving is done in segments. This reduce the memory need for the sieving array to the
size of the segment. One may consider Eratosthenes sieves as a segmented sieve with
just one segment. One way to obtain a significant speed up is to implement a wheel in
which you skip multiples of 2, 3, 5,.. up to some limit. This may also reduce the memory
requirements.
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4.8 Additional comments

On a machine with multiple cores (which modern machines normally has (or should have))
a significant speed up may be archived by distributing the work of an algorithm among the
cores. ECM is particular easy to parallellize; One may run one (or more) curves on each
core. In EECM_Torben this is done by implementing the Runnable interface. Although
in Java you are not 100% certain that all cores are used. The user may specify how many
threads that should be used with the option −NT (The number of threads running at the
same time, not the total number of threads).

4.9 Experiments

In this chapter we present performance tests for EECM_Torben. The method used is the
following: For a random β-bit prime we picked a random (200−β)-bit prime and multiplied
these together to obtain a 200-bit number with two prime factors. For a particular β-bit
prime a sample set of 500 numbers was created. It was then run with EECM_Torben
using the option −FSα where α is the factor size with α ≈ β

3 . We have measured: Time,
number of curves, number of modular multiplications (multiplications and squaring) and
the total number of modular operations.

The following charts are average plots e.g. a run with the 15-bit sample set all times
are added and divided with 500 to get the average time over the 500 samples. All output
and sample set files may be downloaded by visiting http://home.imf.au.dk/himsen/

Cryptography.html.

Figure 4.1: Average time.
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Figure 4.2: Average modular multiplications (multiplications+squarings).

Figure 4.3: Average total modular operations (multiplications+squarings+additions+inversions)
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4.9. Experiments

Figure 4.4: The theoretical total number of modular operations. For a β-bit factor 8 ·
e
√

2 ln(2β) ln(ln(2β)) is plotted. See remark 2.3.5.

Figure 4.5: Average number of curves.
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Figure 4.6: The theoretical number of curves needed. For a β-bit factor e
√

1
2 ln(2β) ln(ln(2β)) is

plotted. See remark 2.3.5.

The magic words are squeamish ossifrage1.
— RSA message encoded in 1977 by Ron Rivest.

1Rivest estimated that breaking this message by factoring the 125-digit number would require 40
quadrillion years. It was broken using idle times on machines connected to the internet.
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Appendix A

Maple scripts

The following are scripts for the computer algebra system Maple (Maple 12), verifying
different kind of identities in the thesis. The maple files may be downloaded by visiting
http://home.imf.au.dk/himsen/Cryptography.html.

Script 1

Script 2

Script 3
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Script 4
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